View source: R/full_information.R
exp_decay | R Documentation |
Exponential smoothing twists probabilities by giving relatively more weight to recent observations at an exponential rate.
exp_decay(x, lambda) ## Default S3 method: exp_decay(x, lambda) ## S3 method for class 'numeric' exp_decay(x, lambda) ## S3 method for class 'matrix' exp_decay(x, lambda) ## S3 method for class 'ts' exp_decay(x, lambda) ## S3 method for class 'xts' exp_decay(x, lambda) ## S3 method for class 'data.frame' exp_decay(x, lambda) ## S3 method for class 'tbl' exp_decay(x, lambda)
x |
An univariate or a multivariate distribution. |
lambda |
A |
The half-life is linked with the lambda parameter as follows:
HL = log(2) / lambda
.
For example: log(2) / 0.0166 is approximately 42. So, a parameter lambda
of 0.0166
can be associated with a half-life of two-months (21 * 2).
A numerical vector of class ffp
with the new
probabilities distribution.
crisp
kernel_normal
half_life
library(ggplot2) # long half_life long_hl <- exp_decay(EuStockMarkets, 0.001) long_hl autoplot(long_hl) + scale_color_viridis_c() # short half_life short_hl <- exp_decay(EuStockMarkets, 0.015) short_hl autoplot(short_hl) + scale_color_viridis_c()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.