svyglmuni: Univariable survey-weighted generalised linear models

Description Usage Arguments Value See Also Examples

View source: R/svyglm.R

Description

Wrapper for svyglm. Fit a generalised linear model to data from a complex survey design, with inverse-probability weighting and design-based standard errors.

Usage

1
svyglmuni(design, dependent, explanatory, ...)

Arguments

design

Survey design.

dependent

Character vector of length 1: name of depdendent variable (must have 2 levels).

explanatory

Character vector of any length: name(s) of explanatory variables.

...

Other arguments to be passed to svyglm.

Value

A list of univariable fitted model outputs. Output is of class svyglmlist.

See Also

fit2df, finalfit_merge

Other finalfit model wrappers: coxphmulti(), coxphuni(), crrmulti(), crruni(), glmmixed(), glmmulti_boot(), glmmulti(), glmuni(), lmmixed(), lmmulti(), lmuni(), svyglmmulti()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Examples taken from survey::svyglm() help page. 

library(survey)
library(dplyr)

data(api)
dependent = "api00"
explanatory = c("ell", "meals", "mobility")

library(survey)
library(dplyr)

data(api)

apistrat = apistrat %>% 
  mutate(
  api00 = ff_label(api00, "API in 2000 (api00)"),
  ell = ff_label(ell, "English language learners (percent)(ell)"),
  meals = ff_label(meals, "Meals eligible (percent)(meals)"),
  mobility = ff_label(mobility, "First year at the school (percent)(mobility)"),
  sch.wide = ff_label(sch.wide, "School-wide target met (sch.wide)")
  )

# Linear example
dependent = "api00"
explanatory = c("ell", "meals", "mobility")

# Stratified design
dstrat = svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)

# Univariable fit
fit_uni = dstrat %>%
  svyglmuni(dependent, explanatory) %>%
  fit2df(estimate_suffix = " (univariable)")

# Multivariable fit
fit_multi = dstrat %>%
  svyglmmulti(dependent, explanatory) %>%
  fit2df(estimate_suffix = " (multivariable)")

# Pipe together
apistrat %>%
  summary_factorlist(dependent, explanatory, fit_id = TRUE) %>%
  ff_merge(fit_uni) %>% 
  ff_merge(fit_multi) %>% 
  select(-fit_id, -index) %>%
  dependent_label(apistrat, dependent)

# Binomial example
## Note model family needs specified and exponentiation if desired

dependent = "sch.wide"
explanatory = c("ell", "meals", "mobility")

# Univariable fit
fit_uni = dstrat %>%
  svyglmuni(dependent, explanatory, family = "quasibinomial") %>%
  fit2df(exp = TRUE, estimate_name = "OR", estimate_suffix = " (univariable)")

# Multivariable fit
fit_multi = dstrat %>%
  svyglmmulti(dependent, explanatory, family = "quasibinomial") %>%
  fit2df(exp = TRUE, estimate_name = "OR", estimate_suffix = " (multivariable)")

# Pipe together
apistrat %>%
  summary_factorlist(dependent, explanatory, fit_id = TRUE) %>%
  ff_merge(fit_uni) %>% 
  ff_merge(fit_multi) %>% 
  select(-fit_id, -index) %>%
  dependent_label(apistrat, dependent)

finalfit documentation built on June 11, 2021, 5:17 p.m.