Nothing
test_that("2022 svi calculation works", {
load(system.file("testdata","cdc_pa_cty_svi2022.rda",package = "findSVI"))
pa_cty_raw <- load(system.file("testdata","pa_cty_raw2022.rda",package = "findSVI")) %>%
get()
output <- get_svi(2022, pa_cty_raw)
join_RPL <- cdc_pa_cty_svi2022 %>%
dplyr::select(GEOID,
cdc_RPL_themes = RPL_THEMES,
cdc_RPL_theme1 = RPL_THEME1,
cdc_RPL_theme2 = RPL_THEME2,
cdc_RPL_theme3 = RPL_THEME3,
cdc_RPL_theme4 = RPL_THEME4) %>%
dplyr::mutate(GEOID = paste(GEOID)) %>%
dplyr::left_join(output %>%
dplyr::select(GEOID,
RPL_themes,
RPL_theme1,
RPL_theme2,
RPL_theme3,
RPL_theme4)) %>%
tidyr::drop_na() %>% ## remove NA rows
dplyr::filter_all(dplyr::all_vars(. >= 0)) #-999 in cdc data
check <- join_RPL %>%
dplyr::transmute(overall = cor(cdc_RPL_themes, RPL_themes),
theme1 = cor(cdc_RPL_theme1, RPL_theme1),
theme2 = cor(cdc_RPL_theme2, RPL_theme2),
theme3 = cor(cdc_RPL_theme3, RPL_theme3),
theme4 = cor(cdc_RPL_theme4, RPL_theme4)) %>%
dplyr::distinct()
expect_equal(as.numeric(check[1,]), c(1,1,1,1,1), tolerance = 0.0001)
#change tolerance from 0.00005 to 0.0001 for mac_release check
})
test_that("2020 svi calculation works", {
load(system.file("testdata","cdc_pa_cty_svi2020.rda",package = "findSVI"))
pa_cty_raw <- load(system.file("testdata","pa_cty_raw2020.rda",package = "findSVI")) %>%
get()
output <- get_svi(2020, pa_cty_raw)
join_RPL <- cdc_pa_cty_svi2020 %>%
dplyr::select(GEOID,
cdc_RPL_themes = RPL_THEMES,
cdc_RPL_theme1 = RPL_THEME1,
cdc_RPL_theme2 = RPL_THEME2,
cdc_RPL_theme3 = RPL_THEME3,
cdc_RPL_theme4 = RPL_THEME4) %>%
dplyr::mutate(GEOID = paste(GEOID)) %>%
dplyr::left_join(output %>%
dplyr::select(GEOID,
RPL_themes,
RPL_theme1,
RPL_theme2,
RPL_theme3,
RPL_theme4)) %>%
tidyr::drop_na() %>% ## remove NA rows
dplyr::filter_all(dplyr::all_vars(. >= 0)) #-999 in cdc data
check <- join_RPL %>%
dplyr::transmute(overall = cor(cdc_RPL_themes, RPL_themes),
theme1 = cor(cdc_RPL_theme1, RPL_theme1),
theme2 = cor(cdc_RPL_theme2, RPL_theme2),
theme3 = cor(cdc_RPL_theme3, RPL_theme3),
theme4 = cor(cdc_RPL_theme4, RPL_theme4)) %>%
dplyr::distinct()
expect_equal(as.numeric(check[1,]), c(1,1,1,1,1), tolerance = 0.0001)
#change tolerance from 0.00005 to 0.0001 for mac_release check
})
test_that("2018 svi calculation works", {
load(system.file("testdata","cdc_pa_cty_svi2018.rda",package = "findSVI"))
pa_cty_raw <- load(system.file("testdata","pa_cty_raw2018.rda",package = "findSVI")) %>%
get()
output <- get_svi(2018, pa_cty_raw)
join_RPL <- cdc_pa_cty_svi2018 %>%
dplyr::select(GEOID,
cdc_RPL_themes = RPL_THEMES,
cdc_RPL_theme1 = RPL_THEME1,
cdc_RPL_theme2 = RPL_THEME2,
cdc_RPL_theme3 = RPL_THEME3,
cdc_RPL_theme4 = RPL_THEME4) %>%
dplyr::mutate(GEOID = paste(GEOID)) %>%
dplyr::left_join(output %>%
dplyr::select(GEOID,
RPL_themes,
RPL_theme1,
RPL_theme2,
RPL_theme3,
RPL_theme4)) %>%
tidyr::drop_na() %>% ## remove NA rows
dplyr::filter_all(dplyr::all_vars(. >= 0)) #-999 in cdc data
check <- join_RPL %>%
dplyr::transmute(overall = cor(cdc_RPL_themes, RPL_themes),
theme1 = cor(cdc_RPL_theme1, RPL_theme1),
theme2 = cor(cdc_RPL_theme2, RPL_theme2),
theme3 = cor(cdc_RPL_theme3, RPL_theme3),
theme4 = cor(cdc_RPL_theme4, RPL_theme4)) %>%
dplyr::distinct()
expect_equal(as.numeric(check[1,]), c(1,1,1,1,1), tolerance = 0.0001)
#change tolerance from 0.00005 to 0.0001 for mac_release check
})
test_that("2016 svi calculation works", {
load(system.file("testdata","cdc_pa_cty_svi2016.rda",package = "findSVI"))
pa_cty_raw <- load(system.file("testdata","pa_cty_raw2016.rda",package = "findSVI")) %>%
get()
output <- get_svi(2016, pa_cty_raw)
join_RPL <- cdc_pa_cty_svi2016 %>%
dplyr::select(GEOID,
cdc_RPL_themes = RPL_THEMES,
cdc_RPL_theme1 = RPL_THEME1,
cdc_RPL_theme2 = RPL_THEME2,
cdc_RPL_theme3 = RPL_THEME3,
cdc_RPL_theme4 = RPL_THEME4) %>%
dplyr::mutate(GEOID = paste(GEOID)) %>%
dplyr::left_join(output %>%
dplyr::select(GEOID,
RPL_themes,
RPL_theme1,
RPL_theme2,
RPL_theme3,
RPL_theme4)) %>%
tidyr::drop_na() %>% ## remove NA rows
dplyr::filter_all(dplyr::all_vars(. >= 0)) #-999 in cdc data
check <- join_RPL %>%
dplyr::transmute(overall = cor(cdc_RPL_themes, RPL_themes),
theme1 = cor(cdc_RPL_theme1, RPL_theme1),
theme2 = cor(cdc_RPL_theme2, RPL_theme2),
theme3 = cor(cdc_RPL_theme3, RPL_theme3),
theme4 = cor(cdc_RPL_theme4, RPL_theme4)) %>%
dplyr::distinct()
expect_equal(as.numeric(check[1,]), c(1,1,1,1,1), tolerance = 0.005)
})
test_that("2014 svi calculation works", {
load(system.file("testdata","cdc_pa_cty_svi2014.rda",package = "findSVI"))
pa_cty_raw <- load(system.file("testdata","pa_cty_raw2014.rda",package = "findSVI")) %>%
get()
output <- get_svi(2014, pa_cty_raw)
join_RPL <- cdc_pa_cty_svi2014 %>%
dplyr::select(GEOID,
cdc_RPL_themes = RPL_THEMES,
cdc_RPL_theme1 = RPL_THEME1,
cdc_RPL_theme2 = RPL_THEME2,
cdc_RPL_theme3 = RPL_THEME3,
cdc_RPL_theme4 = RPL_THEME4) %>%
dplyr::mutate(GEOID = paste(GEOID)) %>%
dplyr::left_join(output %>%
dplyr::select(GEOID,
RPL_themes,
RPL_theme1,
RPL_theme2,
RPL_theme3,
RPL_theme4)) %>%
tidyr::drop_na() %>% ## remove NA rows
dplyr::filter_all(dplyr::all_vars(. >= 0)) #-999 in cdc data
check <- join_RPL %>%
dplyr::transmute(overall = cor(cdc_RPL_themes, RPL_themes),
theme1 = cor(cdc_RPL_theme1, RPL_theme1),
theme2 = cor(cdc_RPL_theme2, RPL_theme2),
theme3 = cor(cdc_RPL_theme3, RPL_theme3),
theme4 = cor(cdc_RPL_theme4, RPL_theme4)) %>%
dplyr::distinct()
expect_equal(as.numeric(check[1,]), c(1,1,1,1,1), tolerance = 0.005)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.