Nothing
test_that("top-level win/loss filter interfaces", {
skip_on_cran()
# Skip for < 4.0 due to random number differences
skip_if(getRversion() < "4.0.0")
library(dials)
# ------------------------------------------------------------------------------
set.seed(2332)
folds <- vfold_cv(mtcars, v = 5, repeats = 2)
fold_att <- attributes(folds)
spec <- decision_tree(cost_complexity = tune(), min_n = tune()) %>%
set_engine("rpart") %>%
set_mode("regression")
wflow <- workflow() %>%
add_model(spec) %>%
add_formula(mpg ~ .)
grid <- expand.grid(cost_complexity = c(0.001, 0.01), min_n = c(2:5))
rec <- recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_predictors())
prm <- extract_parameter_set_dials(wflow) %>% update(min_n = min_n(c(2, 20)))
# ------------------------------------------------------------------------------
set.seed(129)
suppressWarnings(wl_mod <- spec %>% tune_race_win_loss(mpg ~ ., folds, grid = grid))
expect_true(inherits(wl_mod, "tune_race"))
expect_true(inherits(wl_mod, "tune_results"))
expect_true(tibble::is_tibble((wl_mod)))
expect_null(.get_tune_eval_times(wl_mod))
expect_null(.get_tune_eval_time_target(wl_mod))
expect_silent({
set.seed(129)
suppressWarnings(
wl_wlfow <-
wflow %>%
tune_race_win_loss(folds,
grid = grid, param_info = prm,
control = control_race(verbose_elim = FALSE, save_pred = TRUE)
)
)
})
expect_true(inherits(wl_wlfow, "tune_race"))
expect_true(inherits(wl_wlfow, "tune_results"))
expect_true(tibble::is_tibble((wl_wlfow)))
expect_true(sum(names(wl_wlfow) == ".predictions") == 1)
get_mod <- function(x) workflows::extract_fit_parsnip(x)
expect_silent({
set.seed(129)
suppressMessages(
wl_rec <-
spec %>%
tune_race_win_loss(rec, folds,
grid = expand.grid(cost_complexity = c(.0001, .001), min_n = c(3, 5)),
param_info = prm,
control = control_race(
verbose_elim = FALSE,
extract = get_mod
)
)
)
})
expect_true(inherits(wl_rec, "tune_race"))
expect_true(inherits(wl_rec, "tune_results"))
expect_true(tibble::is_tibble((wl_rec)))
expect_true(sum(names(wl_rec) == ".extracts") == 1)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.