Nothing
######################################################################
#' First derivative of the density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Vector
#' @inheritParams manf
exp_fd=function (x, v1)
{
.e1 <- v1 * x
(1 - .e1) * exp(-.e1)
}
######################################################################
#' Second derivative of the density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @inheritParams manf
#' @returns Matrix
exp_fdd=function (x, v1)
{
.e1 <- v1 * x
-(x * (2 - .e1) * exp(-.e1))
}
######################################################################
#' First derivative of the cdf
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Vector
#' @inheritParams manf
exp_pd=function (x, v1)
x * exp(-(v1 * x))
######################################################################
#' Second derivative of the cdf
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Matrix
#' @inheritParams manf
exp_pdd=function (x, v1)
-(x^2 * exp(-(v1 * x)))
######################################################################
#' Second derivative of the log density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Matrix
#' @inheritParams manf
exp_logfdd=function (x, v1)
-(1/v1^2)
############################################################
#' Third derivative of the log density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns 3d array
#' @inheritParams manf
exp_logfddd=function (x, v1)
2/v1^3
############################################################
#' The first derivative of the density
#' @returns Vector
#' @inheritParams manf
exp_f1fa=function(x,v1){
nx=length(x)
f1=matrix(0,1,nx)
vf=Vectorize(exp_fd)
f1[1,]=vf(x,v1)
return(f1)
}
############################################################
#' The second derivative of the density
#' @returns Matrix
#' @inheritParams manf
exp_f2fa=function(x,v1){
nx=length(x)
f2=array(0,c(1,1,nx))
vf=Vectorize(exp_fdd)
f2[1,1,]=vf(x,v1)
return(f2)
}
############################################################
#' The first derivative of the cdf
#' @returns Vector
#' @inheritParams manf
exp_p1fa=function(x,v1){
nx=length(x)
p1=matrix(0,1,nx)
vf=Vectorize(exp_pd)
p1[1,]=vf(x,v1)
return(p1)
}
############################################################
#' The second derivative of the cdf
#' @returns Matrix
#' @inheritParams manf
exp_p2fa=function(x,v1){
nx=length(x)
p2=array(0,c(1,1,nx))
vf=Vectorize(exp_pdd)
p2[1,1,]=vf(x,v1)
return(p2)
}
############################################################
#' The second derivative of the normalized log-likelihood
#' @returns Matrix
#' @inheritParams manf
exp_ldda=function(x,v1){
nx=length(x)
ldd=matrix(0,1,1)
vf=Vectorize(exp_logfdd)
ldd[1,1]=sum(vf(x,v1))/nx
return(ldd)
}
############################################################
#' The third derivative of the normalized log-likelihood
#' @returns 3d array
#' @inheritParams manf
exp_lddda=function(x,v1){
nx=length(x)
lddd=array(0,c(1,1,1))
vf=Vectorize(exp_logfddd)
lddd[1,1,1]=sum(vf(x,v1))/nx
return(lddd)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.