Nothing
# extraDistr is very confusing:
# a = shape parameter (they call scale), that I'm varying here
# b = scale parameter (they call location), that I'm calling kscale
#
#' Pareto Distribution Predictions Based on a Calibrating Prior
#'
#' @inherit man description author references seealso return
#' @inheritParams man
#'
#' @inheritSection man Optional Return Values
# #' @inheritSection man Optional Return Values (EVD models only)
# #' @inheritSection man Optional Return Values (non-RHP models only)
#' @inheritSection man Details (homogeneous models)
# #' @inheritSection man Details (non-homogeneous models)
#' @inheritSection man Details (analytic integration)
# #' @inheritSection man Details (DMGS integration)
#' @inheritSection man Details (RUST)
#'
#' @section Details of the Model:
#' The Pareto distribution has various forms.
#' The form we are using has exceedance distribution function
#' \deqn{S(x;\alpha)={\left(\frac{\sigma}{x}\right)^\alpha}}
#' where
#' \eqn{x \ge \sigma} is the random variable
#' and
#' \eqn{\alpha>0, \sigma>0} are the shape and scale parameters.
#' We consider the scale parameter \eqn{\sigma} to be known
#' (hence the \code{k2} in the name).
#'
#' The calibrating prior is given by the right Haar prior, which is
#' \deqn{\pi(\alpha) \propto \frac{1}{\alpha}}
#' as given in Jewson et al. (2025).
#' Some others authors may refer to the shape and scale parameters
#' as the scale and location parameters, respectively.
#'
#' @example man/examples/example_11_pareto_k2.R
#'
#' @name pareto_k2_cp
NULL
#' @rdname pareto_k2_cp
#' @inheritParams man
#' @export
#'
qpareto_k2_cp=function(x,p=seq(0.1,0.9,0.1),kscale=1,fd1=0.01,
means=FALSE,waicscores=FALSE,logscores=FALSE,rust=FALSE,nrust=100000,
debug=FALSE,aderivs=TRUE){
#
# 1 intro
#
stopifnot(is.finite(x),!is.na(x),is.finite(p),!is.na(p),p>0,p<1,!x<kscale)
alpha=1-p
nx=length(x)
lnx=log(x/kscale)
slnx=sum(lnx)
nalpha=length(alpha)
#
# 2 ml param estimate
#
v1hat=pareto_k2_ml_params(x,kscale)
ml_params=v1hat
#
# 3 aic
#
ml_value=sum(log(v1hat)+v1hat*log(kscale)-(v1hat+1)*log(x))
maic=make_maic(ml_value,nparams=2)
#
# 4 ml quantiles (vectorized over alpha)
#
logalpha=log(alpha)
ml_quantiles=exp(log(kscale)-logalpha/v1hat)
ldd="only relevant for DMGS models, not analytic models"
lddi="only relevant for DMGS models, not analytic models"
expinfmat=nx/(v1hat*v1hat)
expinfmati=1/expinfmat
standard_errors=sqrt(expinfmati)
#
# 5 rhp quantiles (Vectorized over alpha)
#
alphan=alpha**(1/nx)
logq=(slnx/alphan)-slnx
rh_quantiles=exp(log(kscale)+logq)
#
# 5.5 calc mpd quantiles (vectorized over alpha)
# -left here for now, but not returned
logalphasq=logalpha*logalpha
eps=0.5*alpha*logalphasq/nx
ftop=v1hat
fb1=(v1hat+1)/v1hat
fbot=exp(-fb1*logalpha)
ff=ftop/fbot
delta=eps/ff
mpd_quantiles=ml_quantiles+delta
#
# 6 means (might as well always calculate)
#
if(v1hat>1){
ml_mean=v1hat*kscale/(v1hat-1)
} else{
ml_mean=Inf
}
rh_mean=Inf
#
# 7 waicscores
#
waic=pareto_k2_waic(waicscores,x,v1hat,fd1,kscale,aderivs)
waic1=waic$waic1
waic2=waic$waic2
#
# 8 logscores
#
logscores=pareto_k2_logscores(logscores,x,kscale)
ml_oos_logscore=logscores$ml_oos_logscore
rh_oos_logscore=logscores$rh_oos_logscore
#
# 9 rust
#
ru_quantiles="rust not selected"
if(rust){
rustsim=rpareto_k2_cp(nrust,x,kscale,rust=TRUE,mlcp=FALSE)
ru_quantiles=makeq(rustsim$ru_deviates,p)
}
# return
list( ml_params=ml_params,
ml_value=ml_value,
standard_errors=standard_errors,
ml_quantiles=ml_quantiles,
cp_quantiles=rh_quantiles,
ru_quantiles=ru_quantiles,
maic=maic,
waic1=waic1,
waic2=waic2,
ml_oos_logscore=ml_oos_logscore,
cp_oos_logscore=rh_oos_logscore,
ml_mean=ml_mean,
cp_mean=rh_mean,
cp_method=analytic_cpmethod())
}
#' @rdname pareto_k2_cp
#' @inheritParams man
#' @export
rpareto_k2_cp=function(n,x,kscale=1,rust=FALSE,mlcp=TRUE,debug=FALSE,aderivs=TRUE){
# stopifnot(is.finite(n),!is.na(n),is.finite(x),!is.na(x),!x<kscale)
stopifnot(is.finite(x),!is.na(x),!x<kscale)
ml_params="mlcp not selected"
ml_deviates="mlcp not selected"
cp_deviates="mlcp not selected"
ru_deviates="rust not selected"
if(mlcp){
q=qpareto_k2_cp(x,runif(n),kscale=kscale,aderivs=aderivs)
ml_params=q$ml_params
ml_deviates=q$ml_quantiles
cp_deviates=q$cp_quantiles
}
if(rust){
th=tpareto_k2_cp(n,x)$theta_samples
ru_deviates=numeric(0)
for (i in 1:n){
ru_deviates[i]=rpareto(1,a=th[i],b=kscale)
}
}
op=list(ml_params=ml_params,
ml_deviates=ml_deviates,
cp_deviates=cp_deviates,
ru_deviates=ru_deviates,
cp_method=analytic_cpmethod())
return(op)
}
#' @rdname pareto_k2_cp
#' @inheritParams man
#' @export
dpareto_k2_cp=function(x,y=x,kscale=1,rust=FALSE,nrust=1000,debug=FALSE,aderivs=TRUE){
stopifnot(is.finite(x),!is.na(x),is.finite(y),!is.na(y),!x<kscale,!y<kscale)
dd=dpareto_k2_sub(x=x,y=y,kscale=kscale,aderivs=aderivs)
ru_pdf="rust not selected"
if(rust){
th=tpareto_k2_cp(nrust,x,kscale)$theta_samples
ru_pdf=numeric(length(y))
for (ir in 1:nrust){
ru_pdf=ru_pdf+dpareto(y,a=th[ir],b=kscale)
}
ru_pdf=ru_pdf/nrust
}
op=list( ml_params=dd$ml_params,
ml_pdf=dd$ml_pdf,
cp_pdf=dd$rh_pdf,
ru_pdf=ru_pdf,
cp_method=analytic_cpmethod())
return(op)
}
#' @rdname pareto_k2_cp
#' @inheritParams man
#' @export
ppareto_k2_cp=function(x,y=x,kscale=1,rust=FALSE,nrust=1000,debug=FALSE,aderivs=TRUE){
stopifnot(is.finite(x),!is.na(x),x>=kscale)
# stopifnot(is.finite(y),!is.na(y),y>=kscale)
dd=dpareto_k2_sub(x=x,y=y,kscale=kscale,aderivs=aderivs)
ru_cdf="rust not selected"
if(rust){
th=tpareto_k2_cp(nrust,x,kscale)$theta_samples
ru_cdf=numeric(length(y))
for (ir in 1:nrust){
ru_cdf=ru_cdf+ppareto(y,a=th[ir],b=kscale)
}
ru_cdf=ru_cdf/nrust
}
op=list( ml_params=dd$ml_params,
ml_cdf=dd$ml_cdf,
cp_cdf=dd$rh_cdf,
ru_cdf=ru_cdf,
cp_method=analytic_cpmethod())
return(op)
}
#' @rdname pareto_k2_cp
#' @inheritParams man
#' @export
tpareto_k2_cp=function(n,x,kscale=1,debug=FALSE){
# stopifnot(is.finite(n),!is.na(n),is.finite(x),!is.na(x),!x<kscale)
stopifnot(is.finite(x),!is.na(x),!x<kscale)
t=ru(pareto_k2_logf,x=x,kscale=kscale,n=n,d=1,init=1)
list(theta_samples=t$sim_vals)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.