Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library("flevr")
## ----load-biomarker-data------------------------------------------------------
# load the dataset
data("biomarkers")
library("dplyr")
# set up vector "y" of outcomes and matrix "x" of features
cc <- complete.cases(biomarkers)
y <- biomarkers$mucinous
y_cc <- y[cc]
x_cc <- biomarkers %>%
na.omit() %>%
select(starts_with("lab"), starts_with("cea"))
x_names <- names(x_cc)
## ----fit-spvim----------------------------------------------------------------
set.seed(1234)
# set up a library for SuperLearner; this is too simple a library for use in most applications
learners <- "SL.glm"
univariate_learners <- "SL.glm"
V <- 2
# estimate the SPVIMs
library("SuperLearner")
library("vimp")
est <- suppressWarnings(
sp_vim(Y = y_cc, X = x_cc, V = V, type = "auc",
SL.library = learners, gamma = .1, alpha = 0.05, delta = 0,
cvControl = list(V = V), env = environment())
)
est
## ----intrinsic-selection------------------------------------------------------
intrinsic_set <- intrinsic_selection(
spvim_ests = est, sample_size = nrow(x_cc), alpha = 0.2, feature_names = x_names,
control = list( quantity = "gFWER", base_method = "Holm", k = 1)
)
intrinsic_set
## ----intrinsic-selection-fdr--------------------------------------------------
intrinsic_set_fdr <- intrinsic_selection(
spvim_ests = est, sample_size = nrow(x_cc), alpha = 0.2, feature_names = x_names,
control = list( quantity = "FDR", base_method = "Holm", k = 1)
)
intrinsic_set_fdr
## ----impute-setup-------------------------------------------------------------
n_imp <- 2
## ----impute, eval = FALSE-----------------------------------------------------
# library("mice")
# set.seed(20231121)
# mi_biomarkers <- mice::mice(data = biomarkers, m = n_imp, printFlag = FALSE)
# imputed_biomarkers <- mice::complete(mi_biomarkers, action = "long") %>%
# rename(imp = .imp, id = .id)
## ----est-spvim-imp, eval = FALSE----------------------------------------------
# set.seed(20231121)
# est_lst <- lapply(as.list(1:n_imp), function(l) {
# this_x <- imputed_biomarkers %>%
# filter(imp == l) %>%
# select(starts_with("lab"), starts_with("cea"))
# this_y <- biomarkers$mucinous
# suppressWarnings(
# sp_vim(Y = this_y, X = this_x, V = V, type = "auc",
# SL.library = learners, gamma = 0.1, alpha = 0.05, delta = 0,
# cvControl = list(V = V), env = environment())
# )
# })
## ----intrinsic-select-mi, eval = FALSE----------------------------------------
# intrinsic_set <- intrinsic_selection(
# spvim_ests = est_lst, sample_size = nrow(biomarkers),
# feature_names = x_names, alpha = 0.05,
# control = list(quantity = "gFWER", base_method = "Holm", k = 5)
# )
# intrinsic_set
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.