plot_objective | R Documentation |
Plot of the objective function with one parameter moving (objective = f(theta_index)). You need either to provide data, dsumstats AND simulatorQ OR obj.
plot_objective(
ndraw,
data = NULL,
dsumstats = NULL,
simulatorQ = NULL,
obj = NULL,
quantiles = NULL,
index = NULL,
other_param = NULL,
nsim = 10,
lower = 0,
upper = 1,
dim2 = TRUE,
visualize_min = TRUE,
plot_legend = TRUE,
npoints = 300,
add_to_plot = NULL
)
ndraw |
Integer.Number of random variables to draw for one simulation of the model. |
data |
1D array containing the observations. |
dsumstats |
Function computing the distance between simulations and data of form dsumstats(simulations, data) where simulations : 2D array and data : 1D array. ncol(simulations) = length(data) mandatory. |
simulatorQ |
Function of type simulatorQ(Theta, quantiles) where Theta is the parameter set for the simulations and quantiles are drawn in U(0,1). |
obj |
objective function of type objective(Theta, quantiles). Default : directly computed with "dsumstats" and "simulatorQ". |
quantiles |
2D array containing values drawn in U(0,1). Row number = number of simulations. Default: simulated within the function. Column number = number of random variables to draw in one simulation. |
index |
Integer. Index of the moving parameter. |
other_param |
Other parameters of the model. If NULL : assume 1D-model. If numeric : 2D-model, one curve. If 1D-array and dim2 is True (default) : 2D-model, one curve by value in other_param. If 1D-array and dim2 is False or 2D-array : (n>2)D-model, one curve by row in other_param. If your model has n>2 dimensions, you should define other_param as a matrix even if you have only one parameter set to test (with as.matrix(t(vect_param)) where vect_param is a 1D-array). |
nsim |
Integer. Number of simulations to run for each step of the optimization algorithm. Computation time grows linearly with this number. Default to 10. |
lower |
Numeric. Lower value of the plot. |
upper |
Numeric. Upper value of the plot. |
dim2 |
Boolean. True if model is 2-dimensional. |
visualize_min |
Boolean. If True, show explicitly the minimum point. |
plot_legend |
Boolean. If True (default), plots the legend. |
npoints |
Integer. Number of points evaluated. Default = 300. |
add_to_plot |
ggplot object. If not NULL, will add all curves/points on previous plot instead of creating a new one. Does not change title/labels/limits defined in previous plot. |
ggplot object representing the objective function to be minimized.
data <- rep(100, 5)
dsumstats <- function(simulations, data){
mean_simu <- mean(rowMeans(simulations))
mean_data <- mean(data)
(mean_simu-mean_data)^2
}
simulatorQ <- function(Theta, quantiles){
qpois(quantiles, lambda = Theta)
}
plot_objective(5, data, dsumstats, simulatorQ,
lower = 0, upper = 200)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.