Nothing
Code
output
Output
# A tibble: 6 x 6
f_fluxid f_temp_air_ave datetime f_flux PAR_ave temp_soil_ave
<fct> <dbl> <dttm> <dbl> <dbl> <dbl>
1 1 7.31 2022-07-28 23:43:35 95.6 1.95 10.8
2 2 7.38 2022-07-28 23:47:22 52.4 2.11 10.7
3 3 7.46 2022-07-28 23:52:10 18.6 2.04 10.7
4 4 7.77 2022-07-28 23:59:32 69.4 1.84 10.8
5 5 7.71 2022-07-29 00:03:10 89.9 1.66 10.6
6 6 7.75 2022-07-29 00:06:35 26.2 1.78 12.2
Code
dplyr::select(flux_calc(slopes0, f_slope, datetime, temp_air, conc_unit = "ppm",
flux_unit = "mmol/m2/h", cols_keep = c("turfID", "type", "f_start"),
setup_volume = 24.575, atm_pressure = 1, plot_area = 0.0625, cut = FALSE),
f_fluxid, f_flux, turfID, type, f_start, f_slope)
Message
Averaging air temperature for each flux...
Creating a df with the columns from 'cols_keep' argument...
Calculating fluxes...
R constant set to 0.082057
Concentration was measured in ppm
Fluxes are in mmol/m2/h
Output
# A tibble: 6 x 6
f_fluxid f_flux turfID type f_start f_slope
<fct> <dbl> <fct> <fct> <dttm> <dbl>
1 1 95.6 156 AN2C 156 ER 2022-07-28 23:43:35 1.56
2 2 52.4 74 WN2C 155 NEE 2022-07-28 23:47:22 0.853
3 3 18.6 74 WN2C 155 ER 2022-07-28 23:52:10 0.303
4 4 69.4 109 AN3C 109 NEE 2022-07-28 23:59:32 1.13
5 5 89.9 109 AN3C 109 ER 2022-07-29 00:03:10 1.46
6 6 26.2 29 WN3C 106 NEE 2022-07-29 00:06:35 0.426
Code
dplyr::select(flux_calc(slopes0, f_slope, datetime, temp_air, conc_unit = "ppm",
flux_unit = "mmol/m2/h", cols_keep = c("turfID", "type", "f_start"),
cols_ave = c("PAR", "temp_soil"), setup_volume = 24.575, atm_pressure = 1,
plot_area = 0.0625, cut = FALSE), f_fluxid, f_flux, turfID, type, f_start,
PAR_ave, temp_soil_ave)
Message
Averaging air temperature for each flux...
Creating a df with the columns from 'cols_keep' argument...
Creating a df with the columns from 'cols_ave' argument...
Calculating fluxes...
R constant set to 0.082057
Concentration was measured in ppm
Fluxes are in mmol/m2/h
Output
# A tibble: 6 x 7
f_fluxid f_flux turfID type f_start PAR_ave temp_soil_ave
<fct> <dbl> <fct> <fct> <dttm> <dbl> <dbl>
1 1 95.6 156 AN2C 156 ER 2022-07-28 23:43:35 1.95 10.8
2 2 52.4 74 WN2C 155 NEE 2022-07-28 23:47:22 2.11 10.7
3 3 18.6 74 WN2C 155 ER 2022-07-28 23:52:10 2.04 10.7
4 4 69.4 109 AN3C 109 NEE 2022-07-28 23:59:32 1.84 10.8
5 5 89.9 109 AN3C 109 ER 2022-07-29 00:03:10 1.66 10.6
6 6 26.2 29 WN3C 106 NEE 2022-07-29 00:06:35 1.78 12.2
Code
output
Output
# A tibble: 1,251 x 7
# Groups: f_fluxid [6]
f_fluxid datetime f_flux PAR_ave temp_soil_ave conc PAR
<fct> <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 2022-07-28 23:43:35 6.94 1.95 10.8 447. NA
2 1 2022-07-28 23:43:35 6.94 1.95 10.8 447. 1.68
3 1 2022-07-28 23:43:35 6.94 1.95 10.8 448. NA
4 1 2022-07-28 23:43:35 6.94 1.95 10.8 449. NA
5 1 2022-07-28 23:43:35 6.94 1.95 10.8 449. NA
6 1 2022-07-28 23:43:35 6.94 1.95 10.8 450. NA
7 1 2022-07-28 23:43:35 6.94 1.95 10.8 451. NA
8 1 2022-07-28 23:43:35 6.94 1.95 10.8 451. NA
9 1 2022-07-28 23:43:35 6.94 1.95 10.8 453. NA
10 1 2022-07-28 23:43:35 6.94 1.95 10.8 453. NA
# i 1,241 more rows
Code
output
Output
# A tibble: 1,251 x 28
# Groups: f_fluxid [6]
f_fluxid datetime f_flux PAR_ave temp_soil_ave
<fct> <dttm> <dbl> <dbl> <dbl>
1 1 2022-07-28 23:43:35 6.94 1.95 10.8
2 1 2022-07-28 23:43:35 6.94 1.95 10.8
3 1 2022-07-28 23:43:35 6.94 1.95 10.8
4 1 2022-07-28 23:43:35 6.94 1.95 10.8
5 1 2022-07-28 23:43:35 6.94 1.95 10.8
6 1 2022-07-28 23:43:35 6.94 1.95 10.8
7 1 2022-07-28 23:43:35 6.94 1.95 10.8
8 1 2022-07-28 23:43:35 6.94 1.95 10.8
9 1 2022-07-28 23:43:35 6.94 1.95 10.8
10 1 2022-07-28 23:43:35 6.94 1.95 10.8
# i 1,241 more rows
# i 23 more variables: nested_variables_datetime <dttm>,
# nested_variables_temp_air <dbl>, nested_variables_temp_soil <dbl>,
# nested_variables_conc <dbl>, nested_variables_PAR <dbl>,
# nested_variables_turfID <fct>, nested_variables_type <fct>,
# nested_variables_f_start <dttm>, nested_variables_f_end <dttm>,
# nested_variables_f_ratio <dbl>, nested_variables_f_flag_match <chr>, ...
Code
dplyr::select(flux_calc(slopes0_temp, f_slope, datetime, temp_fahr, conc_unit = "ppm",
flux_unit = "mmol/m2/h", temp_air_unit = "fahrenheit", setup_volume = 24.575,
atm_pressure = 1, plot_area = 0.0625, cut = FALSE), f_fluxid, f_temp_air_ave,
datetime, f_flux)
Message
Averaging air temperature for each flux...
Calculating fluxes...
R constant set to 0.082057
Concentration was measured in ppm
Fluxes are in mmol/m2/h
Output
# A tibble: 6 x 4
f_fluxid f_temp_air_ave datetime f_flux
<fct> <dbl> <dttm> <dbl>
1 1 45.2 2022-07-28 23:43:35 95.6
2 2 45.3 2022-07-28 23:47:22 52.4
3 3 45.4 2022-07-28 23:52:10 18.6
4 4 46.0 2022-07-28 23:59:32 69.4
5 5 45.9 2022-07-29 00:03:10 89.9
6 6 45.9 2022-07-29 00:06:35 26.2
Code
dplyr::select(flux_calc(slopes0_temp, f_slope, datetime, temp_kelvin,
conc_unit = "ppm", flux_unit = "mmol/m2/h", temp_air_unit = "kelvin",
setup_volume = 24.575, atm_pressure = 1, plot_area = 0.0625, cut = FALSE),
f_fluxid, f_temp_air_ave, datetime, f_flux)
Message
Averaging air temperature for each flux...
Calculating fluxes...
R constant set to 0.082057
Concentration was measured in ppm
Fluxes are in mmol/m2/h
Output
# A tibble: 6 x 4
f_fluxid f_temp_air_ave datetime f_flux
<fct> <dbl> <dttm> <dbl>
1 1 280. 2022-07-28 23:43:35 95.6
2 2 281. 2022-07-28 23:47:22 52.4
3 3 281. 2022-07-28 23:52:10 18.6
4 4 281. 2022-07-28 23:59:32 69.4
5 5 281. 2022-07-29 00:03:10 89.9
6 6 281. 2022-07-29 00:06:35 26.2
Code
dplyr::select(flux_calc(slopes30_flag, f_slope_corr, datetime, temp_air,
conc_unit = "ppm", flux_unit = "mmol/m2/h", keep_arg = "keep", setup_volume = 24.575,
atm_pressure = 1, plot_area = 0.0625), f_fluxid, f_temp_air_ave, datetime,
f_flux)
Message
Cutting data according to 'keep_arg'...
Averaging air temperature for each flux...
Calculating fluxes...
R constant set to 0.082057
Concentration was measured in ppm
Fluxes are in mmol/m2/h
Output
# A tibble: 6 x 4
f_fluxid f_temp_air_ave datetime f_flux
<fct> <dbl> <dttm> <dbl>
1 1 7.29 2022-07-28 23:43:35 47.7
2 2 7.37 2022-07-28 23:47:22 31.0
3 3 7.45 2022-07-28 23:52:10 20.7
4 4 7.77 2022-07-28 23:59:32 41.5
5 5 7.70 2022-07-29 00:03:10 0
6 6 7.74 2022-07-29 00:06:35 26.1
Code
dplyr::select(flux_calc(slopes0_vol, f_slope, datetime, temp_air, setup_volume = volume,
conc_unit = "ppm", flux_unit = "mmol/m2/h", atm_pressure = 1, plot_area = 0.0625),
f_fluxid, f_temp_air_ave, datetime, f_flux)
Message
Cutting data according to 'keep_arg'...
Averaging air temperature for each flux...
Calculating fluxes...
R constant set to 0.082057
Concentration was measured in ppm
Fluxes are in mmol/m2/h
Output
# A tibble: 6 x 4
f_fluxid f_temp_air_ave datetime f_flux
<fct> <dbl> <dttm> <dbl>
1 1 7.31 2022-07-28 23:43:35 70.4
2 2 7.38 2022-07-28 23:47:22 59.9
3 3 7.46 2022-07-28 23:52:10 15.2
4 4 7.77 2022-07-28 23:59:32 68.0
5 5 7.71 2022-07-29 00:03:10 14.9
6 6 7.75 2022-07-29 00:06:35 37.3
Code
str(fluxes_test)
Output
tibble [6 x 6] (S3: tbl_df/tbl/data.frame)
$ f_fluxid : Factor w/ 6 levels "1","2","3","4",..: 1 2 3 4 5 6
$ f_slope_corr : num [1:6] 0.785 0.503 0.344 0.693 0 ...
$ f_temp_air_ave: num [1:6] 7.28 7.37 7.45 7.77 7.69 ...
$ datetime : POSIXct[1:6], format: "2022-07-28 23:43:35" "2022-07-28 23:47:22" ...
$ f_flux : num [1:6] 48.3 30.9 21.1 42.5 0 ...
$ f_model : chr [1:6] "exp_zhao18" "exp_zhao18" "exp_zhao18" "exp_zhao18" ...
Code
stupeflux(raw_conc = co2_df_short, field_record = record_short, f_datetime = datetime,
start_col = start, f_conc = conc, start_cut = 10, measurement_length = 180,
fit_type = "exp_zhao18", temp_air_col = temp_air, conc_unit = "ppm",
flux_unit = "mmol/m2/h", setup_volume = 24.575, atm_pressure = 1, plot_area = 0.0625,
slope_correction = FALSE)
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Total number of measurements: 6
ok 5 83 %
zero 1 17 %
discard 0 0 %
force_discard 0 0 %
start_error 0 0 %
no_data 0 0 %
force_ok 0 0 %
force_zero 0 0 %
force_lm 0 0 %
no_slope 0 0 %
Cutting data according to 'keep_arg'...
Averaging air temperature for each flux...
Calculating fluxes...
R constant set to 0.082057
Concentration was measured in ppm
Fluxes are in mmol/m2/h
Output
# A tibble: 6 x 6
f_fluxid f_slope f_temp_air_ave datetime f_flux f_model
<fct> <dbl> <dbl> <dttm> <dbl> <chr>
1 1 0.785 7.28 2022-07-28 23:43:35 48.3 exp_zhao18
2 2 0.503 7.37 2022-07-28 23:47:22 30.9 exp_zhao18
3 3 0.344 7.45 2022-07-28 23:52:10 21.1 exp_zhao18
4 4 0.693 7.77 2022-07-28 23:59:32 42.5 exp_zhao18
5 5 1.20 7.69 2022-07-29 00:03:10 74.0 exp_zhao18
6 6 0.433 7.74 2022-07-29 00:06:35 26.6 exp_zhao18
Code
fluxes_test
Output
# A tibble: 6 x 4
f_model f_temp_air_ave datetime f_flux
<chr> <dbl> <dttm> <dbl>
1 exp_hm 7.29 2022-07-28 23:43:35 44.7
2 exp_hm 7.37 2022-07-28 23:47:22 25.7
3 exp_hm 7.45 2022-07-28 23:52:10 23.0
4 exp_hm 7.77 2022-07-28 23:59:32 44.5
5 linear 7.70 2022-07-29 00:03:10 0
6 exp_hm 7.74 2022-07-29 00:06:35 24.8
Code
str(fluxes_twogases)
Output
tibble [12 x 7] (S3: tbl_df/tbl/data.frame)
$ f_quality_flag: chr [1:12] "ok" "ok" "ok" "ok" ...
$ f_fluxid : Factor w/ 12 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ f_temp_air_ave: num [1:12] 13.4 16.5 17.1 14.4 15 ...
$ datetime : POSIXct[1:12], format: "2024-06-18 10:04:37" "2024-06-18 11:12:52" ...
$ flux_co2 : num [1:12] 0.08292 0.38505 0.43518 0.00108 0.06371 ...
$ f_model : chr [1:12] "exp_zhao18" "exp_zhao18" "exp_zhao18" "exp_zhao18" ...
$ flux_ch4 : num [1:12] -0.04873 0.01165 0 -0.00649 0 ...
- attr(*, "fit_type")= chr "exp_zhao18"
Code
output
Output
# A tibble: 6 x 6
f_fluxid f_temp_air_ave datetime f_flux PAR_sum temp_soil_med
<fct> <dbl> <dttm> <dbl> <dbl> <dbl>
1 1 7.31 2022-07-28 23:43:35 95.6 40.9 10.8
2 2 7.38 2022-07-28 23:47:22 52.4 44.2 10.7
3 3 7.46 2022-07-28 23:52:10 18.6 42.7 10.7
4 4 7.77 2022-07-28 23:59:32 69.4 38.6 10.8
5 5 7.71 2022-07-29 00:03:10 89.9 33.3 10.6
6 6 7.75 2022-07-29 00:06:35 26.2 37.4 12.2
Code
output
Output
# A tibble: 6 x 6
f_fluxid datetime f_flux PAR_sum temp_soil_ave PAR_ave
<fct> <dttm> <dbl> <dbl> <dbl> <dbl>
1 1 2022-07-28 23:43:35 95.6 40.9 10.8 1.95
2 2 2022-07-28 23:47:22 52.4 44.2 10.7 2.11
3 3 2022-07-28 23:52:10 18.6 42.7 10.7 2.04
4 4 2022-07-28 23:59:32 69.4 38.6 10.8 1.84
5 5 2022-07-29 00:03:10 89.9 33.3 10.6 1.66
6 6 2022-07-29 00:06:35 26.2 37.4 12.2 1.78
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.