Nothing
Code
distinct(select(flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18"),
f_fluxid, f_slope))
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 205 points out of 210 seconds
fluxID 6 : slope was estimated on 206 points out of 210 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 1.56
2 2 0.853
3 3 0.303
4 4 1.13
5 5 1.46
6 6 0.426
Code
distinct(select(flux_fitting(co2_conc, conc, datetime, fit_type = "lin"),
f_fluxid, f_slope))
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 205 points out of 210 seconds
fluxID 6 : slope was estimated on 206 points out of 210 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 0.113
2 2 0.110
3 3 0.115
4 4 0.0431
5 5 -0.105
6 6 0.117
Code
distinct(select(flux_fitting(co2_conc, conc, datetime, fit_type = "qua"),
f_fluxid, f_slope))
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 205 points out of 210 seconds
fluxID 6 : slope was estimated on 206 points out of 210 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 1.60
2 2 0.978
3 3 0.251
4 4 1.24
5 5 0.876
6 6 0.474
Code
distinct(select(flux_fitting(co2_conc, conc, datetime, fit_type = "exp_zhao18",
start_cut = 20), f_fluxid, f_slope))
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 185 points out of 190 seconds
fluxID 6 : slope was estimated on 186 points out of 190 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 1.46
2 2 1.01
3 3 0.241
4 4 1.32
5 5 1.08
6 6 0.337
Code
distinct(select(flux_fitting(co2_conc, conc, datetime, fit_type = "line",
start_cut = 20), f_fluxid, f_slope))
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 185 points out of 190 seconds
fluxID 6 : slope was estimated on 186 points out of 190 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 0.0214
2 2 0.0596
3 3 0.0978
4 4 -0.0327
5 5 -0.195
6 6 0.0877
Code
flux_fitting(rep_data, conc, datetime, fit_type = "exponential")
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 205 points out of 210 seconds
fluxID 6 : slope was estimated on 206 points out of 210 seconds
Output
# A tibble: 1,251 x 29
datetime temp_air temp_soil conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
# i 1,241 more rows
# i 22 more variables: f_start <dttm>, f_end <dttm>, f_fluxid <fct>,
# f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
# f_rsquared_lm <dbl>, f_adj_rsquared_lm <dbl>, f_slope_lm <dbl>,
# f_intercept_lm <dbl>, f_pvalue_lm <dbl>, f_fit_lm <dbl>, f_Cz <dbl>,
# f_Cm <dbl>, f_a <dbl>, f_b <dbl>, f_tz <dbl>, f_slope <dbl>, f_fit <dbl>,
# f_fit_slope <dbl>, f_start_z <dttm>
Code
distinct(select(flux_fitting(co2_conc, conc, datetime, fit_type = "exp_tz"),
f_fluxid, f_slope))
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 205 points out of 210 seconds
fluxID 6 : slope was estimated on 206 points out of 210 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 2253.
2 2 966.
3 3 0.376
4 4 1613.
5 5 1.18
6 6 0.493
Code
distinct(select(flux_fitting(co2_conc_missing, conc, datetime, fit_type = "exp_zhao18",
end_cut = 60, t_zero = 20), f_fluxid, f_slope))
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 1 : slope was estimated on 28 points out of 150 seconds
fluxID 2 : slope was estimated on 61 points out of 150 seconds
fluxID 3 : slope was estimated on 42 points out of 150 seconds
fluxID 6 dropped (no data in the conc column)
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 0.376
2 2 0.462
3 3 -6.33
4 4 0.686
5 5 0.751
6 6 NA
Code
distinct(select(flux_fitting(co2_conc_mid_missing, conc, datetime, fit_type = "exp_zhao18",
end_cut = 60, t_zero = 20), f_fluxid, f_slope))
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 1 : slope was estimated on 139 points out of 150 seconds
fluxID 2 : slope was estimated on 114 points out of 150 seconds
fluxID 4 : slope was estimated on 103 points out of 150 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 0.841
2 2 0.579
3 3 0.472
4 4 0.620
5 5 0.751
6 6 0.475
Code
distinct(select(flux_fitting(co2_conc_mid_missing, conc, datetime, fit_type = "exp_tz",
end_cut = 60, t_zero = 20), f_fluxid, f_slope))
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 1 : slope was estimated on 139 points out of 150 seconds
fluxID 2 : slope was estimated on 114 points out of 150 seconds
fluxID 4 : slope was estimated on 103 points out of 150 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 0.555
2 2 0.387
3 3 0.280
4 4 0.498
5 5 0.579
6 6 0.198
Code
distinct(select(flux_fitting(co2_conc_mid_missing, conc, datetime, fit_type = "quadratic",
end_cut = 60, t_zero = 20), f_fluxid, f_slope))
Condition
Warning in `flux_fitting()`:
fluxID 1 : slope was estimated on 139 points out of 150 seconds
fluxID 2 : slope was estimated on 114 points out of 150 seconds
fluxID 4 : slope was estimated on 103 points out of 150 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 0.645
2 2 0.394
3 3 0.258
4 4 0.525
5 5 0.672
6 6 0.314
Code
distinct(select(flux_fitting(test_data, conc, datetime, fit_type = "exp_tz",
end_cut = 60, t_zero = 20), f_fluxid, f_slope))
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 1 : slope was estimated on 28 points out of 150 seconds
fluxID 2 : slope was estimated on 61 points out of 150 seconds
fluxID 3 : slope was estimated on 42 points out of 150 seconds
fluxID 4 : slope is NA, most likely an issue with the model optimization.
Check your data or use a different model.
fluxID 6 dropped (no data in the conc column)
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 0.367
2 2 0.317
3 3 0.0834
4 4 NA
5 5 0.579
6 6 NA
Code
distinct(select(flux_fitting(test_data, conc, datetime, fit_type = "exp_zhao18",
end_cut = 60, t_zero = 20), f_fluxid, f_slope))
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 1 : slope was estimated on 28 points out of 150 seconds
fluxID 2 : slope was estimated on 61 points out of 150 seconds
fluxID 3 : slope was estimated on 42 points out of 150 seconds
fluxID 4 : slope is NA, most likely an issue with the model optimization.
Check your data or use a different model.
fluxID 6 dropped (no data in the conc column)
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 0.376
2 2 0.462
3 3 -6.33
4 4 NA
5 5 0.751
6 6 NA
Code
distinct(select(flux_fitting(co2_conc, conc, datetime, fit_type = "exp_hm"),
f_fluxid, f_slope))
Message
Cutting measurements...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope is NA, most likely an issue with the model optimization.
Check your data or use a different model.
fluxID 6 : slope was estimated on 206 points out of 210 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 1.93
2 2 1.12
3 3 0.356
4 4 1.57
5 5 NA
6 6 0.641
Code
test_fit
Output
# A tibble: 1,251 x 20
datetime temp_air temp_soil conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
# i 1,241 more rows
# i 13 more variables: f_start <dttm>, f_end <dttm>, f_fluxid <fct>,
# f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
# f_rsquared <dbl>, f_adj_rsquared <dbl>, f_slope <dbl>, f_intercept <dbl>,
# f_pvalue <dbl>, f_fit <dbl>
Code
distinct(select(flux_fitting(co2_conc, conc, datetime, fit_type = "exponential"),
f_fluxid, f_slope))
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 205 points out of 210 seconds
fluxID 6 : slope was estimated on 206 points out of 210 seconds
Output
# A tibble: 6 x 2
f_fluxid f_slope
<fct> <dbl>
1 1 1.56
2 2 0.853
3 3 0.303
4 4 1.13
5 5 1.46
6 6 0.426
Code
flux_fitting(co2_conc, conc, datetime, end_cut = 30, fit_type = "lin")
Output
# A tibble: 1,251 x 20
datetime temp_air temp_soil conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
# i 1,241 more rows
# i 13 more variables: f_start <dttm>, f_end <dttm>, f_fluxid <fct>,
# f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
# f_rsquared <dbl>, f_adj_rsquared <dbl>, f_slope <dbl>, f_intercept <dbl>,
# f_pvalue <dbl>, f_fit <dbl>
Code
flux_fitting(co2_conc, conc, datetime, end_cut = 30, fit_type = "exponential")
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Output
# A tibble: 1,251 x 29
datetime temp_air temp_soil conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
# i 1,241 more rows
# i 22 more variables: f_start <dttm>, f_end <dttm>, f_fluxid <fct>,
# f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
# f_rsquared_lm <dbl>, f_adj_rsquared_lm <dbl>, f_slope_lm <dbl>,
# f_intercept_lm <dbl>, f_pvalue_lm <dbl>, f_fit_lm <dbl>, f_Cz <dbl>,
# f_Cm <dbl>, f_a <dbl>, f_b <dbl>, f_tz <dbl>, f_slope <dbl>, f_fit <dbl>,
# f_fit_slope <dbl>, f_start_z <dttm>
Code
flux_fitting(co2_conc, end_cut = 60, conc, datetime, fit_type = "lin")
Output
# A tibble: 1,251 x 20
datetime temp_air temp_soil conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
# i 1,241 more rows
# i 13 more variables: f_start <dttm>, f_end <dttm>, f_fluxid <fct>,
# f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
# f_rsquared <dbl>, f_adj_rsquared <dbl>, f_slope <dbl>, f_intercept <dbl>,
# f_pvalue <dbl>, f_fit <dbl>
Code
flux_fitting(co2_conc, conc, datetime, end_cut = 60, fit_type = "exponential")
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Output
# A tibble: 1,251 x 29
datetime temp_air temp_soil conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
# i 1,241 more rows
# i 22 more variables: f_start <dttm>, f_end <dttm>, f_fluxid <fct>,
# f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
# f_rsquared_lm <dbl>, f_adj_rsquared_lm <dbl>, f_slope_lm <dbl>,
# f_intercept_lm <dbl>, f_pvalue_lm <dbl>, f_fit_lm <dbl>, f_Cz <dbl>,
# f_Cm <dbl>, f_a <dbl>, f_b <dbl>, f_tz <dbl>, f_slope <dbl>, f_fit <dbl>,
# f_fit_slope <dbl>, f_start_z <dttm>
Code
flux_fitting(co2_conc_names, co2, date_time, f_start, finish, fit_type = "lin")
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 205 points out of 210 seconds
fluxID 6 : slope was estimated on 206 points out of 210 seconds
Output
# A tibble: 1,251 x 20
date_time temp_air temp_soil co2 PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
# i 1,241 more rows
# i 13 more variables: f_start <dttm>, finish <dttm>, f_fluxid <fct>,
# f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
# f_rsquared <dbl>, f_adj_rsquared <dbl>, f_slope <dbl>, f_intercept <dbl>,
# f_pvalue <dbl>, f_fit <dbl>
Code
flux_fitting(co2_conc_names, co2, date_time, f_start, finish, fit_type = "exponential")
Message
Cutting measurements...
Estimating starting parameters for optimization...
Optimizing fitting parameters...
Calculating fits and slopes...
Done.
Condition
Warning in `flux_fitting()`:
fluxID 5 : slope was estimated on 205 points out of 210 seconds
fluxID 6 : slope was estimated on 206 points out of 210 seconds
Output
# A tibble: 1,251 x 29
date_time temp_air temp_soil co2 PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
# i 1,241 more rows
# i 22 more variables: f_start <dttm>, finish <dttm>, f_fluxid <fct>,
# f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
# f_rsquared_lm <dbl>, f_adj_rsquared_lm <dbl>, f_slope_lm <dbl>,
# f_intercept_lm <dbl>, f_pvalue_lm <dbl>, f_fit_lm <dbl>, f_Cz <dbl>,
# f_Cm <dbl>, f_a <dbl>, f_b <dbl>, f_tz <dbl>, f_slope <dbl>, f_fit <dbl>,
# f_fit_slope <dbl>, f_start_z <dttm>
Code
flux_fitting(co2_conc, conc, datetime, f_start, f_end, f_fluxid, fit_type = "quadratic",
t_zero = 10, end_cut = 30)
Output
# A tibble: 1,251 x 30
datetime temp_air temp_soil conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
# i 1,241 more rows
# i 23 more variables: f_start <dttm>, f_end <dttm>, f_fluxid <fct>,
# f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
# f_rsquared_lm <dbl>, f_adj_rsquared_lm <dbl>, f_slope_lm <dbl>,
# f_intercept_lm <dbl>, f_pvalue_lm <dbl>, f_fit_lm <dbl>, f_param1 <dbl>,
# f_param2 <dbl>, f_rsquared <dbl>, f_adj_rsquared <dbl>, f_intercept <dbl>,
# f_pvalue <dbl>, f_slope <dbl>, f_fit <dbl>, f_fit_slope <dbl>, ...
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.