Nothing
Code
dplyr::distinct(dplyr::select(flux_match(co2_df_short, record_short, datetime,
start, measurement_length = 180), f_fluxid, f_start, f_end))
Output
# A tibble: 6 x 3
f_fluxid f_start f_end
<fct> <dttm> <dttm>
1 1 2022-07-28 23:43:25 2022-07-28 23:46:25
2 2 2022-07-28 23:47:12 2022-07-28 23:50:12
3 3 2022-07-28 23:52:00 2022-07-28 23:55:00
4 4 2022-07-28 23:59:22 2022-07-29 00:02:22
5 5 2022-07-29 00:03:00 2022-07-29 00:06:00
6 6 2022-07-29 00:06:25 2022-07-29 00:09:25
Code
flux_match(co2_df_short_180, record_short, datetime, start, measurement_length = 220,
time_diff = 180)
Output
# A tibble: 1,299 x 11
datetime temp_air temp_soil conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 2022-07-28 23:43:25 NA NA 439. NA 156 AN2C 156 ER
2 2022-07-28 23:43:26 7.21 10.9 440. 2.29 156 AN2C 156 ER
3 2022-07-28 23:43:27 NA NA 441. NA 156 AN2C 156 ER
4 2022-07-28 23:43:28 NA NA 441. NA 156 AN2C 156 ER
5 2022-07-28 23:43:29 NA NA 442. NA 156 AN2C 156 ER
6 2022-07-28 23:43:30 NA NA 443. NA 156 AN2C 156 ER
7 2022-07-28 23:43:31 NA NA 443. NA 156 AN2C 156 ER
8 2022-07-28 23:43:32 NA NA 444. NA 156 AN2C 156 ER
9 2022-07-28 23:43:33 NA NA 446. NA 156 AN2C 156 ER
10 2022-07-28 23:43:34 NA NA 446. NA 156 AN2C 156 ER
# i 1,289 more rows
# i 4 more variables: start <dttm>, f_start <dttm>, f_fluxid <fct>,
# f_end <dttm>
Code
flux_match(co2_df_short, record_short, date_time, starting, measurement_length = 220)
Output
# A tibble: 1,299 x 11
date_time temp_air temp_soil CO2_conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 2022-07-28 23:43:25 NA NA 439. NA 156 AN2C 156 ER
2 2022-07-28 23:43:26 7.21 10.9 440. 2.29 156 AN2C 156 ER
3 2022-07-28 23:43:27 NA NA 441. NA 156 AN2C 156 ER
4 2022-07-28 23:43:28 NA NA 441. NA 156 AN2C 156 ER
5 2022-07-28 23:43:29 NA NA 442. NA 156 AN2C 156 ER
6 2022-07-28 23:43:30 NA NA 443. NA 156 AN2C 156 ER
7 2022-07-28 23:43:31 NA NA 443. NA 156 AN2C 156 ER
8 2022-07-28 23:43:32 NA NA 444. NA 156 AN2C 156 ER
9 2022-07-28 23:43:33 NA NA 446. NA 156 AN2C 156 ER
10 2022-07-28 23:43:34 NA NA 446. NA 156 AN2C 156 ER
# i 1,289 more rows
# i 4 more variables: starting <dttm>, f_start <dttm>, f_fluxid <fct>,
# f_end <dttm>
Code
suppressWarnings(flux_match(co2_df_missing, record_short, datetime, start,
measurement_length = 220))
Output
# A tibble: 686 x 11
datetime temp_air temp_soil conc PAR turfID type
<dttm> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 2022-07-28 23:43:25 NA NA NA NA 156 AN2C 156 ER
2 2022-07-28 23:45:37 NA NA 514. NA 156 AN2C 156 ER
3 2022-07-28 23:45:38 NA NA 513. NA 156 AN2C 156 ER
4 2022-07-28 23:45:39 NA NA 513. NA 156 AN2C 156 ER
5 2022-07-28 23:45:40 NA NA 514. NA 156 AN2C 156 ER
6 2022-07-28 23:45:41 NA NA 514. NA 156 AN2C 156 ER
7 2022-07-28 23:45:42 NA NA 515. NA 156 AN2C 156 ER
8 2022-07-28 23:45:43 NA NA 515. NA 156 AN2C 156 ER
9 2022-07-28 23:45:44 NA NA 515. NA 156 AN2C 156 ER
10 2022-07-28 23:45:45 NA NA 515. NA 156 AN2C 156 ER
# i 676 more rows
# i 4 more variables: start <dttm>, f_start <dttm>, f_fluxid <fct>,
# f_end <dttm>
Code
dplyr::distinct(dplyr::select(flux_match(co2_df_short, record_short_end,
datetime, start, end, fixed_length = FALSE), f_fluxid, f_start, f_end))
Output
# A tibble: 6 x 3
f_fluxid f_start f_end
<fct> <dttm> <dttm>
1 1 2022-07-28 23:43:25 2022-07-28 23:45:25
2 2 2022-07-28 23:47:12 2022-07-28 23:50:12
3 3 2022-07-28 23:52:00 2022-07-28 23:54:00
4 4 2022-07-28 23:59:22 2022-07-29 00:02:22
5 5 2022-07-29 00:03:00 2022-07-29 00:05:00
6 6 2022-07-29 00:06:25 2022-07-29 00:09:25
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.