Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
eval = TRUE,
echo = TRUE,
comment = "#>",
dpi = 120,
fig.align = "center",
out.width = "80%"
)
## ----setup--------------------------------------------------------------------
library(forcis)
## ----'download-db', eval=FALSE------------------------------------------------
# # Create a data/ folder ----
# dir.create("data")
#
# # Download latest version of the database ----
# download_forcis_db(path = "data", version = NULL)
## ----'load-data', echo=FALSE--------------------------------------------------
file_name <- system.file(
file.path("extdata", "FORCIS_net_sample.csv"),
package = "forcis"
)
net_data <- read.csv(file_name)
## ----'load-data-user', eval=FALSE---------------------------------------------
# # Import net data ----
# net_data <- read_plankton_nets_data(path = "data")
## ----'select-taxo'------------------------------------------------------------
# Select taxonomy ----
net_data_vt <- net_data |>
select_taxonomy(taxonomy = "VT")
net_data_vt
## ----'select-columns'---------------------------------------------------------
# Remove not required columns (optional) ----
net_data_vt <- net_data_vt |>
select_forcis_columns()
net_data_vt
## ----'filter-by-month'--------------------------------------------------------
# Filter data by sampling month ----
net_data_vt_july_aug <- net_data_vt |>
filter_by_month(months = 7:8)
# Number of original records ----
nrow(net_data_vt)
# Number of filtered records ----
nrow(net_data_vt_july_aug)
## ----'filter-by-year'---------------------------------------------------------
# Filter data by sampling year ----
net_data_vt_9020 <- net_data_vt |>
filter_by_year(years = 1990:2020)
# Number of original records ----
nrow(net_data_vt)
# Number of filtered records ----
nrow(net_data_vt_9020)
## ----'filter-by-bbox'---------------------------------------------------------
# Filter by spatial bounding box ----
net_data_vt_bbox <- net_data_vt |>
filter_by_bbox(bbox = c(45, -61, 82, -24))
# Number of original records ----
nrow(net_data_vt)
# Number of filtered records ----
nrow(net_data_vt_bbox)
## ----'check-bbox'-------------------------------------------------------------
# Filter by spatial bounding box ----
net_data_vt_sf <- net_data_vt |>
data_to_sf()
net_data_vt_bbox_sf <- net_data_vt_bbox |>
data_to_sf()
# Original spatial extent ----
sf::st_bbox(net_data_vt_sf)
# Spatial extent of filtered records ----
sf::st_bbox(net_data_vt_bbox_sf)
## ----'filter-by-ocean'--------------------------------------------------------
# Filter by ocean name ----
net_data_vt_indian <- net_data_vt |>
filter_by_ocean(ocean = "Indian Ocean")
# Number of original records ----
nrow(net_data_vt)
# Number of filtered records ----
nrow(net_data_vt_indian)
## ----'get-ocean-names'--------------------------------------------------------
# Get ocean names ----
get_ocean_names()
## ----'filter-by-polygon'------------------------------------------------------
# Import spatial polygon ----
file_name <- system.file(
file.path("extdata", "IHO_Indian_ocean_polygon.gpkg"),
package = "forcis"
)
indian_ocean <- sf::st_read(file_name, quiet = TRUE)
# Filter by polygon ----
net_data_vt_poly <- net_data_vt |>
filter_by_polygon(polygon = indian_ocean)
# Number of original records ----
nrow(net_data_vt)
# Number of filtered records ----
nrow(net_data_vt_poly)
## ----'filter-by-species'------------------------------------------------------
# Filter by species ----
net_data_vt_glutinata_nitida <- net_data_vt |>
filter_by_species(species = c("g_glutinata_VT", "c_nitida_VT"))
# Dimensions of original data ----
dim(net_data_vt)
# Dimensions of filtered data ----
dim(net_data_vt_glutinata_nitida)
## ----'filter-counts'----------------------------------------------------------
# Keep samples with positive counts ----
net_data_vt_glutinata_nitida <- net_data_vt_glutinata_nitida |>
dplyr::filter(g_glutinata_VT > 0 | c_nitida_VT > 0)
# Number of filtered records ----
nrow(net_data_vt_glutinata_nitida)
## ----'reshape-data'-----------------------------------------------------------
# Convert to long format ----
net_data_long <- convert_to_long_format(net_data)
# Dimensions of original data ----
dim(net_data)
# Dimensions of reshaped data ----
dim(net_data_long)
## ----'reshape-data-2'---------------------------------------------------------
# Column names ----
colnames(net_data_long)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.