inst/extdata/Alfalfa.O.forlme2.R

Alfalfa.O.forlme2 <-
list(`Number of rows included in Step 1` = 70, Subgroups = structure(c(16L, 
14L, 10L, 18L, 4L, 5L, 17L, 12L, 13L, 8L, 6L, 2L, 7L, 11L, 15L, 
9L, 3L, 1L), .Label = c("Ranger--6", "Cossack--6", "Ranger--5", 
"Ladak--5", "Ladak--6", "Cossack--5", "Ranger--1", "Cossack--4", 
"Ranger--4", "Ladak--3", "Ranger--2", "Cossack--2", "Cossack--3", 
"Ladak--2", "Ranger--3", "Ladak--1", "Cossack--1", "Ladak--4"
), class = c("ordered", "factor")), `Rows by subgroup` = list(
    structure(list(Observation = 1:4, Variety = structure(c(1L, 
    1L, 1L, 1L), .Label = "Ladak", class = "factor"), Date = structure(1:4, .Label = c("None", 
    "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
    1L, 1L, 1L), .Label = "1", class = "factor"), Yield = c(2.1702772806138224, 
    1.5806388668494766, 2.2895874474624129, 2.2288767447733235
    ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ladak--1", class = c("ordered", 
    "factor"))), row.names = c(NA, 4L), class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 5:8, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ladak", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "2", class = "factor"), Yield = c(1.879323752181689, 
        1.2596640275306576, 1.6003412943666759, 2.0109329945097718
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ladak--2", class = c("ordered", 
        "factor"))), row.names = 5:8, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 9:12, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ladak", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "3", class = "factor"), Yield = c(1.6198886705397375, 
        1.2203679820304651, 1.6693475016608663, 1.8198235548259056
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ladak--3", class = c("ordered", 
        "factor"))), row.names = 9:12, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 13:16, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ladak", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "4", class = "factor"), Yield = c(2.33898983231026, 
        1.5901671931912742, 1.9110447254684879, 2.1002620083142327
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ladak--4", class = c("ordered", 
        "factor"))), row.names = 13:16, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 17:20, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ladak", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "5", class = "factor"), Yield = c(1.5797506567673885, 
        1.2506005600481083, 1.3898981931183316, 1.6599597509730268
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ladak--5", class = c("ordered", 
        "factor"))), row.names = 17:20, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 21:24, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ladak", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "6", class = "factor"), Yield = c(1.6594957019881853, 
        0.94056522378369911, 1.1198268908879254, 1.1006926222958349
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ladak--6", class = c("ordered", 
        "factor"))), row.names = 21:24, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 25:28, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Cossack", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "1", class = "factor"), Yield = c(2.329985284375196, 
        1.3811068276526532, 1.860702170594807, 2.2694798332410442
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Cossack--1", class = c("ordered", 
        "factor"))), row.names = 25:28, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 29:32, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Cossack", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "2", class = "factor"), Yield = c(2.010827951692256, 
        1.2999855497227559, 1.7000747207351112, 1.8092400422909256
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Cossack--2", class = c("ordered", 
        "factor"))), row.names = 29:32, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 33:36, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Cossack", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "3", class = "factor"), Yield = c(1.6996236094670496, 
        1.8501113109750971, 1.8098752916020089, 2.009669896818655
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Cossack--3", class = c("ordered", 
        "factor"))), row.names = 33:36, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 37:40, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Cossack", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "4", class = "factor"), Yield = c(1.7793879580155905, 
        1.089480091845511, 1.5398431231297383, 1.3992125277259302
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Cossack--4", class = c("ordered", 
        "factor"))), row.names = 37:40, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 41:44, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Cossack", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "5", class = "factor"), Yield = c(1.4204717426946047, 
        1.1297525303836233, 1.6691149536524474, 1.3089732075911227
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Cossack--5", class = c("ordered", 
        "factor"))), row.names = 41:44, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 45:48, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Cossack", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "6", class = "factor"), Yield = c(1.3507288147324952, 
        1.0608478138426489, 0.88071048346316361, 1.0600854025748347
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Cossack--6", class = c("ordered", 
        "factor"))), row.names = 45:48, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 49:52, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ranger", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "1", class = "factor"), Yield = c(1.7490639583715661, 
        1.5194417801404119, 1.5501326621176719, 1.5599620510672685
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ranger--1", class = c("ordered", 
        "factor"))), row.names = 49:52, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 53:56, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ranger", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "2", class = "factor"), Yield = c(1.9502900585886727, 
        1.4705777551665564, 1.6104860636201392, 1.7203651692510835
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ranger--2", class = c("ordered", 
        "factor"))), row.names = 53:56, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 57:60, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ranger", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "3", class = "factor"), Yield = c(2.1290088476757094, 
        1.7990472599953964, 1.8210200439820023, 1.9909721525632564
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ranger--3", class = c("ordered", 
        "factor"))), row.names = 57:60, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 61:64, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ranger", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "4", class = "factor"), Yield = c(1.7809767715083646, 
        1.3690018079216084, 1.5606856880330651, 1.5489595521638297
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ranger--4", class = c("ordered", 
        "factor"))), row.names = 61:64, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 65:68, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ranger", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "5", class = "factor"), Yield = c(1.3099323961187408, 
        1.0106760378892068, 1.2301975302097641, 1.5108187831839843
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ranger--5", class = c("ordered", 
        "factor"))), row.names = 65:68, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE), structure(list(
        Observation = 69:72, Variety = structure(c(1L, 1L, 1L, 
        1L), .Label = "Ranger", class = "factor"), Date = structure(1:4, .Label = c("None", 
        "S1", "S20", "O7"), class = "factor"), Block = structure(c(1L, 
        1L, 1L, 1L), .Label = "6", class = "factor"), Yield = c(1.3010460275823292, 
        1.3101546883352355, 1.1307734927571038, 1.3293805524104656
        ), Subgroup = structure(c(1L, 1L, 1L, 1L), .Label = "Ranger--6", class = c("ordered", 
        "factor"))), row.names = 69:72, class = c("nffGroupedData", 
    "nfGroupedData", "groupedData", "data.frame"), formula = Yield ~ 
        1 | Subgroup, FUN = function (x) 
    max(x, na.rm = TRUE), order.groups = TRUE)), `Rows in stage` = list(
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, c(1L, 
    2L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
    16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 
    28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 
    40L, 41L, 42L, 43L, 44L, 45L, 46L, 48L, 49L, 50L, 51L, 52L, 
    53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 
    65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L), c(2L, 1L, 7L, 6L, 
    11L, 10L, 14L, 15L, 20L, 18L, 21L, 22L, 26L, 27L, 30L, 32L, 
    33L, 35L, 37L, 39L, 43L, 42L, 46L, 45L, 51L, 49L, 56L, 55L, 
    59L, 60L, 61L, 63L, 68L, 66L, 70L, 72L, 62L, 5L, 31L, 12L, 
    54L, 52L, 64L, 9L, 53L, 50L, 19L, 17L, 29L, 38L, 40L, 36L, 
    8L, 67L, 57L, 41L, 44L, 16L, 71L, 23L, 58L, 65L, 69L, 34L, 
    4L, 25L, 13L, 28L, 24L, 48L, 47L), c(2L, 1L, 7L, 6L, 10L, 
    12L, 14L, 15L, 20L, 18L, 21L, 22L, 26L, 27L, 30L, 32L, 33L, 
    35L, 37L, 39L, 43L, 42L, 46L, 45L, 51L, 49L, 56L, 55L, 59L, 
    60L, 61L, 63L, 68L, 67L, 70L, 72L, 62L, 5L, 54L, 52L, 11L, 
    64L, 19L, 9L, 31L, 53L, 50L, 17L, 29L, 38L, 40L, 36L, 8L, 
    66L, 57L, 41L, 44L, 71L, 16L, 23L, 58L, 65L, 69L, 34L, 4L, 
    25L, 13L, 28L, 24L, 48L, 47L, 3L)), Sigma = 0.32435422434269334, 
    `Standardized residuals` = structure(c(0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 1.1999778174656459, 0.73981399412244309, 2.2227437067937252, 
    1.658357477498595, 0.30295380298964131, -0.24976719591532284, 
    0.097763973625457218, 0.98642619402227638, -0.49689729242216951, 
    -0.37091883369598155, 0.3105134990371643, 0.39722640767402972, 
    1.7201268984228466, 0.76919029209145151, 1.0556779077863432, 
    1.2618319297899758, -0.62064475972798028, -0.2777103111958979, 
    -0.55104244064218211, -0.095641549192708133, -0.37478686969309366, 
    -1.233564476168463, -1.3836855263849623, -1.8198895678844691, 
    1.6923654350002202, 0.12464691991159597, 0.90046933920456962, 
    1.7835387929262054, 0.7083877071635778, -0.1254539631408455, 
    0.40524702420247977, 0.36459691885997897, -0.25107056058633281, 
    1.5706107709232038, 0.74376757558240847, 0.98253200182028966, 
    -0.005153157444184704, -0.77445262595720343, -0.088754858862504823, 
    -0.89953804160159589, -1.1117094726835886, -0.6502907204980567, 
    0.30979654210870089, -1.1777502964833637, -1.3267303440887452, 
    -0.86272734493422809, -2.1208931515032519, -1.945083620168792, 
    -0.098643537307361057, 0.55114037091595891, -0.057031704928606007, 
    -0.40393936806158387, 0.52174641021033497, 0.40049018261371366, 
    0.12904079535954061, 0.090591321368693634, 1.0727452123662555, 
    1.4131777944198687, 0.77812739439647949, 0.92488593818942511, 
    -0.0002547674324809209, 0.087326549703451592, -0.024496207859686994, 
    -0.4378606124225457, -1.4525077058494211, -1.0174093937193662, 
    -1.0434074259671069, -0.55545047596490593, -1.4799048163831898, 
    -0.0941020094763374, -1.3499366153252659, -1.1148334503695245, 
    1.1999778174656472, 0.73981399412244586, 2.2725771163336206, 
    1.6583574774985956, 0.3029538029896427, -0.24976719591532012, 
    0.14759738316535254, 0.98642619402227705, -0.49689729242216812, 
    -0.37091883369597883, 0.36034690857705959, 0.39722640767403039, 
    1.7201268984228479, 0.76919029209145429, 1.1055113173262385, 
    1.2618319297899765, -0.62064475972797883, -0.27771031119589518, 
    -0.50120903110228676, -0.09564154919270744, -0.37478686969309227, 
    -1.2335644761684601, -1.333852116845067, -1.8198895678844684, 
    1.6923654350002217, 0.12464691991159871, 0.95030274874446485, 
    1.7835387929262063, 0.70838770716357913, -0.12545396314084278, 
    0.45508043374237506, 0.36459691885997964, -0.25107056058633143, 
    1.5706107709232064, 0.79360098512230381, 0.98253200182029032, 
    -0.0051531574441833344, -0.77445262595720066, -0.038921449322609526, 
    -0.89953804160159523, -1.1117094726835872, -0.65029072049805403, 
    0.35962995164859618, -1.177750296483363, -1.3267303440887439, 
    -0.86272734493422532, -2.0710597419633565, -1.9450836201687913, 
    -0.098643537307359697, 0.55114037091596169, -0.0071982953887107107, 
    -0.40393936806158315, 0.5217464102103363, 0.40049018261371638, 
    0.1788742048994359, 0.090591321368694314, 1.0727452123662569, 
    1.4131777944198716, 0.82796080393637472, 0.92488593818942577, 
    -0.00025476743247955177, 0.08732654970345434, 0.025337201680208303, 
    -0.43786061242254504, -1.4525077058494198, -1.0174093937193636, 
    -0.99357401642721155, -0.55545047596490527, -1.4799048163831885, 
    -0.094102009476334667, -1.3001032057853705, -1.1148334503695239, 
    1.1999778174656501, 0.73981399412244853, 2.2041937164257663, 
    1.6583574774985985, 0.30295380298964542, -0.24976719591531737, 
    0.079213983257498441, 0.98642619402227982, -0.4968972924221654, 
    -0.37091883369597611, 0.29196350866920551, 0.39722640767403317, 
    1.7201268984228506, 0.76919029209145695, 1.0371279174183843, 
    1.2618319297899792, -0.62064475972797617, -0.2777103111958924, 
    -0.5695924310101409, -0.095641549192704706, -0.37478686969308955, 
    -1.2335644761684574, -1.4022355167529212, -1.8198895678844658, 
    1.6923654350002244, 0.12464691991160146, 0.88191934883661083, 
    1.783538792926209, 0.7083877071635819, -0.12545396314084004, 
    0.38669703383452098, 0.36459691885998241, -0.25107056058632871, 
    1.5706107709232091, 0.72521758521444968, 0.9825320018202931, 
    -0.0051531574441805962, -0.77445262595719799, -0.1073048492304636, 
    -0.89953804160159245, -1.1117094726835846, -0.65029072049805126, 
    0.2912465517407421, -1.1777502964833604, -1.326730344088741, 
    -0.86272734493422254, -2.1394431418712108, -1.9450836201687887, 
    -0.098643537307356949, 0.55114037091596435, -0.075581695296564791, 
    -0.40393936806158043, 0.52174641021033907, 0.40049018261371916, 
    0.11049080499158181, 0.090591321368697048, 1.0727452123662595, 
    1.4131777944198742, 0.7595774040285207, 0.92488593818942855, 
    -0.00025476743247681346, 0.087326549703457074, -0.043046198227645778, 
    -0.43786061242254226, -1.4525077058494171, -1.0174093937193607, 
    -1.0619574163350656, -0.55545047596490249, -1.4799048163831856, 
    -0.094102009476331933, -1.3684866056932248, -1.114833450369521
    ), .Dim = c(72L, 72L)), `Fixed parameter estimates` = structure(list(
        m = 1:72, b1 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 1.7810594064013148, 1.7810594064013143, 1.7810594064013134
        ), b2 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        -0.440382333773293, -0.4403823337732935, -0.44038233377329339
        ), b3 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        -0.2124282698685836, -0.22859194676624769, -0.20641150213121862
        ), b4 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        -0.090077914924953428, -0.090077914924953359, -0.090077914924953414
        )), class = "data.frame", row.names = c(NA, -72L)), `Random parameter estimates` = structure(list(
        `Block - (Intercept)` = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0.19215275058287914, 0.19864654794718728, 
        0.20276107994657233), `Variety - (Intercept)` = c(0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.10892367066666474, 
        0.11072968177515082, 0.11720399739662933)), class = "data.frame", row.names = c(NA, 
    -72L)), Leverage = structure(c(70, 70, 70, 70, 70, 70, 70, 
    70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 
    70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 
    70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 
    70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 
    70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 
    71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 
    71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 
    71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 
    71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 72, 
    72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 
    72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 
    72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 
    72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 
    72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 1, 2, 4, 5, 6, 
    7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 
    22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 
    37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 
    53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 
    68, 69, 70, 71, 72, 2, 1, 7, 6, 11, 10, 14, 15, 20, 18, 21, 
    22, 26, 27, 30, 32, 33, 35, 37, 39, 43, 42, 46, 45, 51, 49, 
    56, 55, 59, 60, 61, 63, 68, 66, 70, 72, 62, 5, 31, 12, 54, 
    52, 64, 9, 53, 50, 19, 17, 29, 38, 40, 36, 8, 67, 57, 41, 
    44, 16, 71, 23, 58, 65, 69, 34, 4, 25, 13, 28, 24, 48, 47, 
    2, 1, 7, 6, 10, 12, 14, 15, 20, 18, 21, 22, 26, 27, 30, 32, 
    33, 35, 37, 39, 43, 42, 46, 45, 51, 49, 56, 55, 59, 60, 61, 
    63, 68, 67, 70, 72, 62, 5, 54, 52, 11, 64, 19, 9, 31, 53, 
    50, 17, 29, 38, 40, 36, 8, 66, 57, 41, 44, 71, 16, 23, 58, 
    65, 69, 34, 4, 25, 13, 28, 24, 48, 47, 3, 0.055555555555555539, 
    0.055555555555555559, 0.055555555555555559, 0.055555555555555539, 
    0.055555555555555559, 0.062499999999999993, 0.055555555555555559, 
    0.055555555555555539, 0.055555555555555559, 0.062499999999999993, 
    0.055555555555555559, 0.055555555555555539, 0.055555555555555559, 
    0.062499999999999993, 0.055555555555555559, 0.055555555555555539, 
    0.055555555555555559, 0.062499999999999993, 0.055555555555555559, 
    0.055555555555555539, 0.055555555555555559, 0.062499999999999993, 
    0.055555555555555559, 0.055555555555555539, 0.055555555555555559, 
    0.062499999999999993, 0.055555555555555559, 0.055555555555555539, 
    0.055555555555555559, 0.062499999999999993, 0.055555555555555559, 
    0.055555555555555539, 0.055555555555555559, 0.062499999999999993, 
    0.055555555555555559, 0.055555555555555539, 0.055555555555555559, 
    0.062499999999999993, 0.055555555555555559, 0.055555555555555539, 
    0.055555555555555559, 0.062499999999999993, 0.055555555555555559, 
    0.055555555555555539, 0.055555555555555559, 0.055555555555555559, 
    0.055555555555555539, 0.055555555555555559, 0.062499999999999993, 
    0.055555555555555559, 0.055555555555555539, 0.055555555555555559, 
    0.062499999999999993, 0.055555555555555559, 0.055555555555555539, 
    0.055555555555555559, 0.062499999999999993, 0.055555555555555559, 
    0.055555555555555539, 0.055555555555555559, 0.062499999999999993, 
    0.055555555555555559, 0.055555555555555539, 0.055555555555555559, 
    0.062499999999999993, 0.055555555555555559, 0.055555555555555539, 
    0.055555555555555559, 0.062499999999999993, 0.055555555555555559, 
    0.055555555555555552, 0.055555555555555559, 0.058823529411764712, 
    0.055555555555555552, 0.058823529411764712, 0.055555555555555552, 
    0.055555555555555552, 0.058823529411764712, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555559, 0.055555555555555552, 
    0.055555555555555552, 0.058823529411764712, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555559, 0.058823529411764712, 
    0.055555555555555559, 0.058823529411764712, 0.058823529411764712, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555559, 
    0.058823529411764712, 0.055555555555555559, 0.055555555555555552, 
    0.058823529411764712, 0.058823529411764712, 0.055555555555555552, 
    0.055555555555555559, 0.058823529411764712, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555559, 0.058823529411764712, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555559, 0.055555555555555559, 
    0.055555555555555552, 0.058823529411764712, 0.055555555555555559, 
    0.055555555555555559, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.058823529411764712, 
    0.055555555555555559, 0.055555555555555559, 0.055555555555555552, 
    0.055555555555555552, 0.058823529411764712, 0.058823529411764712, 
    0.055555555555555552, 0.055555555555555559, 0.055555555555555559, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555559, 
    0.055555555555555559, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.058823529411764712, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552, 0.055555555555555552, 
    0.055555555555555552, 0.055555555555555552), .Dim = c(213L, 
    3L), .Dimnames = list(c("", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
    "", "", "", "", "", "", "", "", ""), c("m", "Observation", 
    "leverage"))), `Modified Cook distance` = c(0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0.011812326619088124, 0.022135045676875017
    ), Dims = list(N = 72L, Q = 2L, qvec = c(Variety = 1, Block = 1, 
    0, 0), ngrps = c(Variety = 18L, Block = 6L, X = 1L, y = 1L
    ), ncol = c(Variety = 1, Block = 1, 4, 1)), `t statistics` = structure(list(
        m = 1:72, `(Intercept)` = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 16.609288502265134, 16.197903816350202, 
        15.796048921072151), DateS1 = c(0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, -7.9865646202738558, -7.9444661060622881, 
        -7.7909101786748733), DateS20 = c(0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, -3.7097242310008789, -4.0494462781931295, 
        -3.651675713625564), DateO7 = c(0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, -1.6336102364588097, -1.6249992044286972, 
        -1.593590138481592)), class = "data.frame", row.names = c("1", 
    "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", 
    "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", 
    "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", 
    "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", 
    "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", 
    "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", 
    "63", "64", "65", "66", "67", "68", "69", "70", "71", "72"
    )), `Fit statistics` = structure(list(m = 1:72, AIC = c(0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.6069220770278321, 9.2116954779308742, 
    11.983216312134758), BIC = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 23.934505271212807, 24.644543813667635, 27.519770248367507
    ), logLik = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.696538961486084, 
    2.3941522610345629, 1.0083918439326212)), class = "data.frame", row.names = c(NA, 
    -72L)), Call = quote(forsearch_lme(fixed = Yield ~ Date, 
        data = Alfalfa.O.A, random = ~1 | Block/Variety, formula = Yield ~ 
            1 | Subgroup, response.column = 5, initial.sample = 4, 
        robs = 2, skip.step1 = firstrun)))

Try the forsearch package in your browser

Any scripts or data that you put into this service are public.

forsearch documentation built on April 4, 2025, 5:52 a.m.