inst/extdata/Machines.O.forlme2.R

Machines.O.forlme2 <-
list(`Number of rows included in Step 1` = 36, Subgroups = structure(c(5L, 
6L, 8L, 4L, 3L, 2L, 12L, 7L, 16L, 11L, 13L, 1L, 15L, 10L, 17L, 
14L, 18L, 9L), .Label = c("B--6", "A--6", "A--5", "A--4", "A--1", 
"A--2", "B--2", "A--3", "C--6", "C--2", "B--4", "B--1", "B--5", 
"C--4", "C--1", "B--3", "C--3", "C--5"), class = c("ordered", 
"factor")), `Rows by subgroup` = list(structure(list(Observation = 1:3, 
    Worker = structure(c(1L, 1L, 1L), .Label = "1", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "A", class = "factor"), 
    score = c(51.999999639267337, 52.800003872833962, 53.099980746789704
    ), MW = structure(c(1L, 1L, 1L), .Label = "A--1", class = c("ordered", 
    "factor"))), row.names = c("1", "2", "3"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 4:6, 
    Worker = structure(c(1L, 1L, 1L), .Label = "2", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "A", class = "factor"), 
    score = c(51.799986927048948, 52.799995418213129, 53.100009875232651
    ), MW = structure(c(1L, 1L, 1L), .Label = "A--2", class = c("ordered", 
    "factor"))), row.names = c("4", "5", "6"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 7:9, 
    Worker = structure(c(1L, 1L, 1L), .Label = "3", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "A", class = "factor"), 
    score = c(59.999983566644254, 60.199979522920835, 58.399983128728245
    ), MW = structure(c(1L, 1L, 1L), .Label = "A--3", class = c("ordered", 
    "factor"))), row.names = c("7", "8", "9"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 10:12, 
    Worker = structure(c(1L, 1L, 1L), .Label = "4", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "A", class = "factor"), 
    score = c(51.100002542301773, 52.30000884204258, 50.299993605865751
    ), MW = structure(c(1L, 1L, 1L), .Label = "A--4", class = c("ordered", 
    "factor"))), row.names = c("10", "11", "12"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 13:15, 
    Worker = structure(c(1L, 1L, 1L), .Label = "5", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "A", class = "factor"), 
    score = c(50.900009454276365, 51.800010318710143, 51.399981897475172
    ), MW = structure(c(1L, 1L, 1L), .Label = "A--5", class = c("ordered", 
    "factor"))), row.names = c("13", "14", "15"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 16:18, 
    Worker = structure(c(1L, 1L, 1L), .Label = "6", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "A", class = "factor"), 
    score = c(46.40002166032162, 44.800014370557797, 49.200018809150137
    ), MW = structure(c(1L, 1L, 1L), .Label = "A--6", class = c("ordered", 
    "factor"))), row.names = c("16", "17", "18"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 19:21, 
    Worker = structure(c(1L, 1L, 1L), .Label = "1", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "B", class = "factor"), 
    score = c(62.099983074866451, 62.600013050406233, 63.9999944113029
    ), MW = structure(c(1L, 1L, 1L), .Label = "B--1", class = c("ordered", 
    "factor"))), row.names = c("19", "20", "21"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 22:24, 
    Worker = structure(c(1L, 1L, 1L), .Label = "2", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "B", class = "factor"), 
    score = c(59.700009833725858, 59.99997784211731, 59.000006808881238
    ), MW = structure(c(1L, 1L, 1L), .Label = "B--2", class = c("ordered", 
    "factor"))), row.names = c("22", "23", "24"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 25:27, 
    Worker = structure(c(1L, 1L, 1L), .Label = "3", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "B", class = "factor"), 
    score = c(68.600013885976807, 65.800000457586322, 69.700021683643612
    ), MW = structure(c(1L, 1L, 1L), .Label = "B--3", class = c("ordered", 
    "factor"))), row.names = c("25", "26", "27"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 28:30, 
    Worker = structure(c(1L, 1L, 1L), .Label = "4", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "B", class = "factor"), 
    score = c(63.200013172199874, 62.799999775457117, 62.200008460341294
    ), MW = structure(c(1L, 1L, 1L), .Label = "B--4", class = c("ordered", 
    "factor"))), row.names = c("28", "29", "30"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 31:33, 
    Worker = structure(c(1L, 1L, 1L), .Label = "5", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "B", class = "factor"), 
    score = c(64.800015501166712, 64.999978789846523, 65.399979908868346
    ), MW = structure(c(1L, 1L, 1L), .Label = "B--5", class = c("ordered", 
    "factor"))), row.names = c("31", "32", "33"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 34:36, 
    Worker = structure(c(1L, 1L, 1L), .Label = "6", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "B", class = "factor"), 
    score = c(43.699997891152918, 44.199984976189754, 42.999991557660607
    ), MW = structure(c(1L, 1L, 1L), .Label = "B--6", class = c("ordered", 
    "factor"))), row.names = c("34", "35", "36"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 37:39, 
    Worker = structure(c(1L, 1L, 1L), .Label = "1", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "C", class = "factor"), 
    score = c(67.499986015760228, 67.200007736081076, 66.899983194636448
    ), MW = structure(c(1L, 1L, 1L), .Label = "C--1", class = c("ordered", 
    "factor"))), row.names = c("37", "38", "39"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 40:42, 
    Worker = structure(c(1L, 1L, 1L), .Label = "2", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "C", class = "factor"), 
    score = c(61.500012498093106, 61.699992075080431, 62.299987067208903
    ), MW = structure(c(1L, 1L, 1L), .Label = "C--2", class = c("ordered", 
    "factor"))), row.names = c("40", "41", "42"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 43:45, 
    Worker = structure(c(1L, 1L, 1L), .Label = "3", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "C", class = "factor"), 
    score = c(70.800018584120679, 70.599995848557029, 71.000019076605852
    ), MW = structure(c(1L, 1L, 1L), .Label = "C--3", class = c("ordered", 
    "factor"))), row.names = c("43", "44", "45"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 46:48, 
    Worker = structure(c(1L, 1L, 1L), .Label = "4", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "C", class = "factor"), 
    score = c(64.100002124372821, 66.200020588868568, 63.999995005848355
    ), MW = structure(c(1L, 1L, 1L), .Label = "C--4", class = c("ordered", 
    "factor"))), row.names = c("46", "47", "48"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 49:51, 
    Worker = structure(c(1L, 1L, 1L), .Label = "5", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "C", class = "factor"), 
    score = c(72.100007634470245, 71.999988312881541, 71.10002230085243
    ), MW = structure(c(1L, 1L, 1L), .Label = "C--5", class = c("ordered", 
    "factor"))), row.names = c("49", "50", "51"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE), structure(list(Observation = 52:54, 
    Worker = structure(c(1L, 1L, 1L), .Label = "6", class = c("ordered", 
    "factor")), Machine = structure(c(1L, 1L, 1L), .Label = "C", class = "factor"), 
    score = c(61.999989139535977, 61.400009639966427, 60.5000045583282
    ), MW = structure(c(1L, 1L, 1L), .Label = "C--6", class = c("ordered", 
    "factor"))), row.names = c("52", "53", "54"), class = c("nffGroupedData", 
"nfGroupedData", "groupedData", "data.frame"), formula = score ~ 
    1 | MW, FUN = function (x) 
max(x, na.rm = TRUE), order.groups = TRUE)), `Rows in stage` = list(
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
    NULL, NULL, NULL, NULL, NULL, c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 
    8L, 9L, 11L, 14L, 19L, 20L, 21L, 22L, 23L, 24L, 26L, 28L, 
    29L, 30L, 31L, 32L, 33L, 37L, 38L, 39L, 40L, 41L, 42L, 46L, 
    47L, 48L, 52L, 53L, 54L), c(3L, 2L, 6L, 5L, 8L, 7L, 11L, 
    10L, 14L, 15L, 18L, 16L, 19L, 20L, 23L, 22L, 26L, 25L, 30L, 
    29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 41L, 44L, 43L, 48L, 
    46L, 51L, 50L, 54L, 53L, 52L), c(3L, 2L, 6L, 5L, 7L, 8L, 
    11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 22L, 23L, 26L, 25L, 
    30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 41L, 44L, 43L, 
    48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L), c(3L, 2L, 6L, 5L, 
    7L, 8L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 22L, 23L, 
    26L, 25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 41L, 
    44L, 43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 52L), c(3L, 
    2L, 6L, 5L, 7L, 8L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 
    22L, 23L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 
    40L, 41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 
    52L, 42L), c(3L, 2L, 6L, 5L, 7L, 8L, 11L, 10L, 14L, 15L, 
    18L, 16L, 19L, 20L, 22L, 23L, 26L, 25L, 30L, 29L, 31L, 32L, 
    35L, 34L, 39L, 38L, 40L, 41L, 44L, 43L, 48L, 46L, 51L, 50L, 
    54L, 53L, 24L, 9L, 52L, 42L, 28L), c(3L, 2L, 6L, 5L, 7L, 
    8L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 22L, 23L, 26L, 
    25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 41L, 44L, 
    43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 52L, 42L, 28L, 
    21L), c(3L, 2L, 6L, 5L, 7L, 8L, 11L, 10L, 14L, 15L, 18L, 
    16L, 19L, 20L, 23L, 22L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 
    34L, 39L, 38L, 40L, 41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 
    53L, 24L, 9L, 52L, 42L, 28L, 21L, 33L), c(3L, 2L, 6L, 5L, 
    7L, 8L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 23L, 22L, 
    26L, 25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 41L, 
    44L, 43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 52L, 42L, 
    28L, 21L, 33L, 47L), c(3L, 2L, 6L, 5L, 8L, 7L, 11L, 10L, 
    14L, 15L, 18L, 16L, 19L, 20L, 23L, 22L, 26L, 25L, 30L, 29L, 
    31L, 32L, 35L, 34L, 39L, 38L, 40L, 41L, 44L, 43L, 48L, 46L, 
    51L, 50L, 54L, 53L, 24L, 9L, 52L, 42L, 28L, 21L, 33L, 47L, 
    37L), c(3L, 2L, 6L, 5L, 8L, 7L, 11L, 10L, 14L, 15L, 18L, 
    16L, 19L, 20L, 23L, 22L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 
    34L, 39L, 38L, 40L, 41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 
    53L, 24L, 52L, 9L, 42L, 28L, 21L, 33L, 47L, 37L, 1L), c(3L, 
    2L, 6L, 5L, 8L, 7L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 
    23L, 22L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 
    40L, 41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 
    52L, 42L, 28L, 21L, 33L, 47L, 37L, 1L, 4L), c(3L, 2L, 6L, 
    5L, 7L, 8L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 23L, 
    22L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 
    41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 52L, 
    42L, 28L, 21L, 33L, 47L, 37L, 1L, 4L, 13L), c(3L, 2L, 6L, 
    5L, 7L, 8L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 22L, 
    23L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 
    41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 52L, 
    42L, 28L, 21L, 33L, 47L, 37L, 1L, 4L, 13L, 12L), c(3L, 2L, 
    6L, 5L, 7L, 8L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 22L, 
    23L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 
    41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 52L, 
    42L, 28L, 21L, 33L, 47L, 1L, 4L, 37L, 13L, 12L, 27L), c(3L, 
    2L, 6L, 5L, 7L, 8L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 
    22L, 23L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 
    40L, 41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 
    52L, 42L, 28L, 21L, 33L, 47L, 37L, 1L, 4L, 13L, 12L, 27L, 
    45L), c(3L, 2L, 6L, 5L, 7L, 8L, 11L, 10L, 14L, 15L, 18L, 
    16L, 19L, 20L, 23L, 22L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 
    34L, 39L, 38L, 40L, 41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 
    53L, 24L, 9L, 52L, 42L, 28L, 21L, 33L, 47L, 37L, 1L, 4L, 
    13L, 27L, 12L, 45L, 49L), c(3L, 2L, 6L, 5L, 8L, 7L, 11L, 
    10L, 14L, 15L, 18L, 16L, 19L, 20L, 23L, 22L, 26L, 25L, 30L, 
    29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 41L, 44L, 43L, 48L, 
    46L, 51L, 50L, 54L, 53L, 24L, 52L, 9L, 42L, 28L, 21L, 33L, 
    47L, 37L, 1L, 4L, 13L, 27L, 12L, 45L, 49L, 17L), c(3L, 2L, 
    6L, 5L, 7L, 8L, 11L, 10L, 14L, 15L, 18L, 16L, 19L, 20L, 23L, 
    22L, 26L, 25L, 30L, 29L, 31L, 32L, 35L, 34L, 39L, 38L, 40L, 
    41L, 44L, 43L, 48L, 46L, 51L, 50L, 54L, 53L, 24L, 9L, 52L, 
    42L, 28L, 21L, 33L, 47L, 37L, 1L, 4L, 13L, 12L, 27L, 45L, 
    49L, 17L, 36L)), Sigma = 8.0762593382787351, `Standardized residuals` = structure(c(0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.0607427370263891, 
-0.96168645365831096, -0.92454340742972418, -1.0855082508417262, 
-0.96168750050691731, -0.92453980075468734, -0.070187135442410481, 
-0.045423696342743659, -0.26829870800330491, -1.1721801066388138, 
-1.0235956878531038, -1.2712369723147647, -1.1969431905924837, 
-1.0855053544932789, -1.1350367531866037, -1.7541303245700079, 
-1.9522427455246361, -1.407435520509237, 0.18983417148478418, 
0.2517477325278043, 0.4250930031856236, -0.10732979274869854, 
-0.070187844251613285, -0.19400395655704011, 0.99466602975639895, 
0.64796920996516594, 1.1308686641187133, 0.32603956698510611, 
0.27651002861988433, 0.20221928460277894, 0.52415137369534492, 
0.54891076790301385, 0.59843878604452561, -2.0884464548571451, 
-2.026538204503288, -2.1751210283412479, 0.8584609100170143, 
0.82131768973217811, 0.78416874132946734, 0.11554599528300138, 
0.14030740630400326, 0.21459860560770805, 1.2670699491942747, 
1.2423031942913445, 1.2918339499659239, 0.43747592811176089, 
0.69749958219903996, 0.42509307680206282, 1.4280342020616954, 
1.415649839772257, 1.3042163190873062, 0.17745295251419757, 0.10316367149447477, 
-0.0082746867777153815, -0.97222937047874014, -0.87317308711066211, 
-0.83603004088207533, -0.99699488429407745, -0.87317413395926846, 
-0.83602643420703848, 0.018326231105238344, 0.043089670204905173, 
-0.17978534145565608, -1.0836667400911648, -0.9350823213054551, 
-1.182723605767116, -1.1084298240448349, -0.99699198794563004, 
-1.0465233866389549, -1.6656169580223592, -1.8637293789769873, 
-1.3189221539615883, 0.27834753803243301, 0.34026109907545316, 
0.51360636973327245, -0.018816426201049712, 0.018325522296035547, 
-0.10549059000939129, 1.0831793963040479, 0.73648257651281479, 
1.2193820306663621, 0.41455293353275496, 0.36502339516753318, 
0.29073265115042779, 0.61266474024299378, 0.6374241344506627, 
0.68695215259217446, -1.9999330883094963, -1.9380248379556393, 
-2.0866076617935989, 0.94697427656466315, 0.90983105627982697, 
0.8726821078771162, 0.20405936183065021, 0.22882077285165209, 
0.3031119721553569, 1.3555833157419235, 1.3308165608389935, 1.3803473165135727, 
0.52598929465940969, 0.78601294874668881, 0.51360644334971162, 
1.5165475686093441, 1.5041632063199057, 1.3927296856349549, 0.26596631906184642, 
0.1916770380421236, 0.080238679769933444, -0.93159292621980638, 
-0.83253664285172835, -0.79539359662314157, -0.95635844003514359, 
-0.8325376897003347, -0.79538998994810473, 0.058962675364172164, 
0.083726114463838985, -0.13914889719672227, -1.0430302958322311, 
-0.89444587704652134, -1.142087161508182, -1.0677933797859012, 
-0.95635554368669629, -1.005886942380021, -1.6249805137634252, 
-1.8230929347180536, -1.2782857097026545, 0.31898398229136682, 
0.38089754333438697, 0.55424281399220621, 0.021820018057884104, 
0.058961966554969367, -0.064854145750457462, 1.1238158405629817, 
0.77711902077174855, 1.2600184749252961, 0.45518937779168878, 
0.40565983942646699, 0.3313690954093616, 0.65330118450192753, 
0.67806057870959657, 0.72758859685110833, -1.9592966440505626, 
-1.8973883936967055, -2.0459712175346652, 0.98761072082359702, 
0.95046750053876083, 0.91331855213604995, 0.24469580608958402, 
0.2694572171105859, 0.34374841641429071, 1.3962197600008572, 
1.3714530050979272, 1.4209837607725064, 0.56662573891834356, 
0.82664939300562257, 0.55424288760864548, 1.5571840128682781, 
1.5447996505788397, 1.4333661298938887, 0.30660276332078024, 
0.23231348230105742, 0.12087512402886727, -0.95627656005971329, 
-0.85722027669163514, -0.82007723046304848, -0.98104207387505049, 
-0.8572213235402415, -0.82007362378801152, 0.034279041524265287, 
0.059042480623932116, -0.16383253103662915, -1.0677139296721379, 
-0.91912951088642814, -1.166770795348089, -1.092477013625808, 
-0.98103917752660319, -1.030570576219928, -1.6496641476033322, 
-1.8477765685579604, -1.3029693435425613, 0.29430034845145997, 
0.35621390949448012, 0.52955918015229941, -0.0028636157820227672, 
0.03427833271506249, -0.089537779590364339, 1.0991322067230747, 
0.75243538693184175, 1.235334841085389, 0.43050574395178187, 
0.38097620558656009, 0.3066854615694547, 0.62861755066202063, 
0.65337694486968967, 0.70290496301120142, -1.9839802778904694, 
-1.9220720275366123, -2.0706548513745719, 0.96292708698369012, 
0.92578386669885393, 0.88863491829614305, 0.22001217224967715, 
0.24477358327067905, 0.31906478257438381, 1.3715361261609504, 
1.3467693712580204, 1.3963001269325996, 0.54194210507843665, 
0.80196575916571577, 0.52955925376873858, 1.5325003790283711, 
1.5201160167389327, 1.4086824960539819, 0.28191912948087333, 
0.20762984846115054, 0.096191490188960393, -0.96599952520026022, 
-0.86694324183218219, -0.82980019560359541, -0.99076503901559743, 
-0.86694428868078843, -0.82979658892855857, 0.024556076383718334, 
0.04931951548338516, -0.17355549617717611, -1.0774368948126849, 
-0.92885247602697507, -1.1764937604886359, -1.102199978766355, 
-0.99076214266715013, -1.0402935413604748, -1.6593871127438791, 
-1.8574995336985074, -1.3126923086831084, 0.28457738331091303, 
0.34649094435393313, 0.51983621501175237, -0.012586580922569722, 
0.024555367574515537, -0.099260744730911288, 1.0894092415825278, 
0.74271242179129482, 1.2256118759448422, 0.42078277881123494, 
0.37125324044601316, 0.29696249642890776, 0.61889458552147369, 
0.64365397972914273, 0.69318199787065449, -1.9937032430310164, 
-1.9317949926771594, -2.080377816515119, 0.95320412184314318, 
0.91606090155830699, 0.87891195315559612, 0.21028920710913021, 
0.23505061813013209, 0.30934181743383687, 1.3618131610204034, 
1.3370464061174734, 1.3865771617920526, 0.53221913993788972, 
0.79224279402516884, 0.51983628862819165, 1.5227774138878243, 
1.5103930515983859, 1.3989595309134348, 0.2721961643403264, 0.19790688332060358, 
0.086468525048413444, -0.97688180894805388, -0.87782552557997584, 
-0.84068247935138907, -1.0016473227633911, -0.87782657242858209, 
-0.84067887267635222, 0.013673792635924676, 0.0384372317355915, 
-0.18443777992496976, -1.0883191785604784, -0.93973475977476884, 
-1.1873760442364296, -1.1130822625141485, -1.0016444264149438, 
-1.0511758251082686, -1.6702693964916728, -1.8683818174463009, 
-1.3235745924309019, 0.27369509956311938, 0.33560866060613948, 
0.50895393126395871, -0.023468864670363378, 0.013673083826721881, 
-0.11014302847870495, 1.0785269578347341, 0.73183013804350106, 
1.2147295921970485, 0.40990049506344128, 0.3603709566982195, 
0.28608021268111411, 0.60801230177368004, 0.63277169598134908, 
0.68229971412286083, -2.00458552677881, -1.9426772764249529, 
-2.0912601002629128, 0.94232183809534953, 0.90517861781051334, 
0.86802966940780246, 0.19940692336133653, 0.22416833438233844, 
0.29845953368604322, 1.3509308772726099, 1.3261641223696796, 
1.3756948780442591, 0.52133685619009607, 0.78136051027737519, 
0.50895400488039799, 1.5118951301400305, 1.4995107678505921, 
1.3880772471656413, 0.26131388059253274, 0.18702459957280992, 
0.075586241300619778, -0.98747235774243658, -0.88841607437435843, 
-0.85127302814577177, -1.0122378715577738, -0.88841712122296479, 
-0.85126942147073492, 0.0030832438415419787, 0.027846682941208803, 
-0.19502832871935244, -1.0989097273548611, -0.95032530856915143, 
-1.1979665930308123, -1.1236728113085312, -1.0122349752093265, 
-1.0617663739026513, -1.6808599452860555, -1.8789723662406836, 
-1.3341651412252846, 0.26310455076873668, 0.32501811181175677, 
0.49836338246957607, -0.034059413464746079, 0.0030825350323391825, 
-0.12073357727308764, 1.0679364090403514, 0.72123958924911846, 
1.2041390434026658, 0.39930994626905858, 0.3497804079038368, 
0.27548966388673141, 0.59742175297929734, 0.62218114718696638, 
0.67170916532847813, -2.0151760755731929, -1.9532678252193356, 
-2.1018506490572952, 0.93173128930096683, 0.89458806901613064, 
0.85743912061341976, 0.18881637456695385, 0.21357778558795573, 
0.28786898489166052, 1.3403403284782271, 1.3155735735752969, 
1.3651043292498763, 0.51074630739571336, 0.77076996148299248, 
0.49836345608601529, 1.5013045813456478, 1.4889202190562094, 
1.3774866983712586, 0.25072333179815004, 0.17643405077842722, 
0.064995692506237088, -0.99839984088091294, -0.89934355751283479, 
-0.86220051128424813, -1.0231653546962503, -0.89934460436144115, 
-0.86219690460921128, -0.0078442392969343792, 0.016919199802732446, 
-0.20595581185782882, -1.1098372104933376, -0.96125279170762779, 
-1.2088940761692886, -1.1346002944470077, -1.0231624583478027, 
-1.0726938570411275, -1.6917874284245318, -1.8898998493791601, 
-1.3450926243637611, 0.25217706763026032, 0.31409062867328041, 
0.48743589933109971, -0.044986896603222436, -0.0078449481061371746, 
-0.131661060411564, 1.0570089259018751, 0.71031210611064211, 
1.1932115602641895, 0.38838246313058222, 0.33885292476536044, 
0.26456218074825505, 0.58649426984082098, 0.61125366404849002, 
0.66078168219000177, -2.0261035587116689, -1.9641953083578121, 
-2.1127781321957717, 0.92080380616249047, 0.88366058587765428, 
0.8465116374749434, 0.1778888914284775, 0.20265030244947937, 
0.27694150175318416, 1.3294128453397507, 1.3046460904368207, 
1.3541768461113999, 0.499818824257237, 0.75984247834451613, 0.48743597294753893, 
1.4903770982071716, 1.4779927359177332, 1.3665592152327821, 0.23979584865967368, 
0.16550656763995086, 0.054068209367760724, -1.0148539010537934, 
-0.91579761768571533, -0.87865457145712855, -1.0396194148691307, 
-0.91579866453432168, -0.8786509647820917, -0.024298299469814887, 
0.00046513962985193791, -0.22240987203070933, -1.126291270666218, 
-0.97770685188050832, -1.2253481363421692, -1.1510543546198881, 
-1.0396165185206834, -1.0891479172140082, -1.7082414885974124, 
-1.9063539095520405, -1.3615466845366415, 0.23572300745737979, 
0.29763656850039993, 0.47098183915821917, -0.061440956776102944, 
-0.024299008279017684, -0.14811512058444451, 1.0405548657289947, 
0.69385804593776157, 1.1767575000913089, 0.37192840295770174, 
0.32239886459247996, 0.24810812057537454, 0.57004020966794045, 
0.59479960387560948, 0.64432762201712124, -2.0425576188845493, 
-1.9806493685306925, -2.1292321923686521, 0.90434974598960993, 
0.86720652570477375, 0.83005757730206298, 0.16143483125559699, 
0.18619624227659887, 0.26048744158030362, 1.3129587851668703, 
1.2881920302639402, 1.3377227859385195, 0.48336476408435652, 
0.74338841817163559, 0.4709819127746584, 1.4739230380342909, 
1.4615386757448525, 1.3501051550599017, 0.22334178848679317, 
0.14905250746707036, 0.037614149194880216, -1.0321879745952571, 
-0.93313169122717898, -0.89598864499859221, -1.0569534884105942, 
-0.93313273807578534, -0.89598503832355536, -0.041632373011278527, 
-0.016868933911611705, -0.23974394557217296, -1.1436253442076818, 
-0.99504092542197198, -1.2426822098836328, -1.1683884281613519, 
-1.0569505920621469, -1.1064819907554717, -1.725575562138876, 
-1.9236879830935041, -1.3788807580781051, 0.21838893391591616, 
0.28030249495893628, 0.45364776561675552, -0.07877503031756658, 
-0.041633081820481324, -0.16544919412590817, 1.0232207921875309, 
0.67652397239629791, 1.1594234265498453, 0.35459432941623809, 
0.3050647910510163, 0.23077404703391091, 0.5527061361264769, 
0.57746553033414583, 0.62699354847565758, -2.0598916924260133, 
-1.9979834420721563, -2.1465662659101161, 0.88701567244814628, 
0.84987245216331009, 0.81272350376059932, 0.14410075771413333, 
0.16886216873513521, 0.24315336803884, 1.2956247116254065, 1.2708579567224765, 
1.3203887123970557, 0.46603069054289287, 0.72605434463017193, 
0.45364783923319474, 1.4565889644928274, 1.444204602203389, 1.3327710815184381, 
0.20600771494532955, 0.13171843392560673, 0.020280075653416576, 
-1.009303213031433, -0.91024692966335496, -0.87310388343476819, 
-1.0340687268467703, -0.91024797651196121, -0.87310027675973134, 
-0.018747611447454446, 0.0060158276522123784, -0.21685918400834889, 
-1.1207405826438577, -0.97215616385814796, -1.2197974483198086, 
-1.1455036665975278, -1.0340658304983228, -1.0835972291916476, 
-1.7026908005750518, -1.9008032215296802, -1.3559959965142812, 
0.24127369547974023, 0.30318725652276035, 0.47653252718057965, 
-0.055890268753742506, -0.018748320256657243, -0.14256443256208406, 
1.0461055537513551, 0.69940873396012193, 1.1823081881136694, 
0.37747909098006216, 0.32794955261484038, 0.25365880859773499, 
0.57559089769030092, 0.60035029189796996, 0.64987831003948171, 
-2.037006930862189, -1.9750986805083321, -2.1236815043462918, 
0.9099004340119704, 0.87275721372713422, 0.83560826532442334, 
0.16698551927795741, 0.19174693029895931, 0.2660381296026641, 
1.3185094731892306, 1.2937427182863006, 1.3432734739608798, 0.48891545210671694, 
0.74893910619399606, 0.47653260079701881, 1.4794737260566515, 
1.4670893637672131, 1.3556558430822621, 0.22889247650915362, 
0.1546031954894308, 0.043164837217240661, -0.99165198205917204, 
-0.89259569869109401, -0.85545265246250723, -1.0164174958745094, 
-0.89259674553970036, -0.85544904578747039, -0.0010963804751935313, 
0.023667058624473294, -0.19920795303608796, -1.1030893516715967, 
-0.954504932885887, -1.2021462173475479, -1.1278524356252668, 
-1.0164145995260621, -1.0659459982193866, -1.6850395696027911, 
-1.8831519905574192, -1.3383447655420202, 0.25892492645200116, 
0.32083848749502131, 0.49418375815284055, -0.038239037781481584, 
-0.0010970892843963275, -0.12491320158982316, 1.063756784723616, 
0.71705996493238289, 1.1999594190859302, 0.39513032195232306, 
0.34560078358710128, 0.27131003956999589, 0.59324212866256187, 
0.6180015228702308, 0.66752954101174267, -2.0193556998899282, 
-1.9574474495360712, -2.106030273374031, 0.92755166498423125, 
0.89040844469939517, 0.85325949629668429, 0.18463675025021833, 
0.20939816127122021, 0.283689360574925, 1.3361607041614916, 1.3113939492585616, 
1.3609247049331408, 0.5065666830789779, 0.76659033716625691, 
0.49418383176927977, 1.4971249570289122, 1.4847405947394738, 
1.373307074054523, 0.24654370748141452, 0.17225442646169173, 
0.060816068189501575, -0.96294012079995173, -0.86388383743187369, 
-0.82674079120328692, -0.98770563461528904, -0.86388488428048005, 
-0.82673718452825007, 0.027615480784026765, 0.052378919883693587, 
-0.17049609177686767, -1.0743774904123764, -0.92579307162666669, 
-1.1734343560883276, -1.0991405743660465, -0.98770273826684163, 
-1.0372341369601665, -1.6563277083435708, -1.8544401292981989, 
-1.3096329042827999, 0.28763678771122142, 0.34955034875424157, 
0.52289561941206086, -0.0095271765222612916, 0.027614771974823968, 
-0.096201340330602861, 1.0924686459828363, 0.7457718261916032, 
1.2286712803451505, 0.42384218321154338, 0.3743126448463216, 
0.3000219008292162, 0.62195398992178219, 0.64671338412945112, 
0.69624140227096287, -1.9906438386307079, -1.9287355882768509, 
-2.0773184121148107, 0.95626352624345157, 0.91912030595861538, 
0.88197135755590461, 0.21334861150943862, 0.23811002253044053, 
0.31240122183414532, 1.3648725654207119, 1.3401058105177819, 
1.3896365661923611, 0.5352785443381981, 0.79530219842547722, 
0.52289569302850003, 1.5258368182881326, 1.5134524559986942, 
1.4020189353137433, 0.27525556874063484, 0.20096628772091202, 
0.089527929448721871, -0.93902081309195218, -0.83996452972387403, 
-0.80282148349528737, -0.96378632690728938, -0.83996557657248039, 
-0.80281787682025041, 0.051534788492026404, 0.076298227591693232, 
-0.14657678406886804, -1.0504581827043769, -0.90187376391866703, 
-1.1495150483803278, -1.075221266658047, -0.96378343055884208, 
-1.0133148292521668, -1.632408400635571, -1.8305208215901991, 
-1.2857135965748003, 0.31155609541922108, 0.37346965646224123, 
0.54681492712006052, 0.014392131185738349, 0.051534079682823607, 
-0.072282032622603229, 1.1163879536908359, 0.76969113389960286, 
1.2525905880531503, 0.44776149091954304, 0.39823195255432126, 
0.32394120853721586, 0.64587329762978174, 0.67063269183745078, 
0.72016070997896253, -1.9667245309227082, -1.9048162805688513, 
-2.0533991044068109, 0.98018283395145123, 0.94303961366661504, 
0.90589066526390427, 0.23726791921743826, 0.26202933023844016, 
0.33632052954214492, 1.3887918731287114, 1.3640251182257814, 
1.4135558739003606, 0.55919785204619776, 0.81922150613347688, 
0.54681500073649969, 1.5497561259961323, 1.5373717637066939, 
1.4259382430217431, 0.29917487644863444, 0.22488559542891165, 
0.1134472371567215, -0.95578568168774536, -0.85672939831966721, 
-0.81958635209108044, -0.98055119550308256, -0.85673044516827357, 
-0.81958274541604359, 0.03476991989623323, 0.059533358995900051, 
-0.16334165266466119, -1.0672230513001699, -0.91863863251446021, 
-1.1662799169761211, -1.09198613525384, -0.98054829915463526, 
-1.0300796978479601, -1.6491732692313643, -1.8472856901859924, 
-1.3024784651705934, 0.2947912268234279, 0.35670478786644805, 
0.53005005852426734, -0.0023727374100548275, 0.034769211087030433, 
-0.089046901218396396, 1.0996230850950428, 0.75292626530380968, 
1.235825719457357, 0.43099662232374986, 0.38146708395852807, 
0.30717633994142268, 0.62910842903398856, 0.6538678232416576, 
0.70339584138316935, -1.9834893995185015, -1.9215811491646444, 
-2.0701639730026042, 0.96341796535565805, 0.92627474507082186, 
0.88912579666811109, 0.2205030506216451, 0.24526446164264698, 
0.31955566094635174, 1.3720270045329184, 1.3472602496299884, 
1.3967910053045676, 0.54243298345040458, 0.8024566375376837, 
0.53005013214070651, 1.532991257400339, 1.5206068951109006, 1.4091733744259498, 
0.28241000785284132, 0.20812072683311847, 0.096682368560928336, 
-0.97179094010872669, -0.87273465674064854, -0.83559161051206177, 
-0.99655645392406389, -0.8727357035892549, -0.83558800383702492, 
0.018764661475251899, 0.043528100574918724, -0.17934691108564255, 
-1.0832283097211513, -0.93464389093544153, -1.1822851753971024, 
-1.1079913936748214, -0.99655355757561659, -1.0460849562689414, 
-1.6651785276523456, -1.8632909486069738, -1.3184837235915747, 
0.27878596840244657, 0.34069952944546672, 0.51404480010328601, 
-0.018377995831036158, 0.018763952666049102, -0.10505215963937772, 
1.0836178266740615, 0.73692100688282836, 1.2198204610363756, 
0.41499136390276853, 0.36546182553754675, 0.29117108152044135, 
0.61310317061300723, 0.63786256482067627, 0.68739058296218802, 
-1.9994946579394828, -1.9375864075856257, -2.0861692314235856, 
0.94741270693467672, 0.91026948664984053, 0.87312053824712976, 
0.20449779220066377, 0.22925920322166565, 0.30355040252537041, 
1.356021746111937, 1.331254991209007, 1.3807857468835862, 0.52642772502942325, 
0.78645137911670238, 0.51404487371972518, 1.5169859989793577, 
1.5046016366899193, 1.3931681160049685, 0.26640474943185999, 
0.19211546841213714, 0.080677110139947009, -0.99715670633193365, 
-0.89810042296385562, -0.86095737673526884, -1.0219222201472709, 
-0.89810146981246197, -0.86095377006023199, -0.006601104747955157, 
0.018162334351711669, -0.20471267730884959, -1.1085940759443584, 
-0.96000965715864861, -1.2076509416203094, -1.1333571598980285, 
-1.0219193237988236, -1.0714507224921483, -1.6905442938755526, 
-1.8886567148301807, -1.3438494898147817, 0.2534202021792395, 
0.31533376322225964, 0.48867903388007894, -0.043743762054243213, 
-0.0066018135571579532, -0.1304179258625848, 1.0582520604508543, 
0.71155524065962128, 1.1944546948131687, 0.38962559767956145, 
0.34009605931433967, 0.26580531529723428, 0.58773740438980027, 
0.61249679859746919, 0.66202481673898095, -2.0248604241626897, 
-1.9629521738088329, -2.1115349976467925, 0.92204694071146964, 
0.88490372042663346, 0.84775477202392269, 0.1791320259774567, 
0.2038934369984586, 0.27818463630216339, 1.3306559798887299, 
1.3058892249857998, 1.3554199806603793, 0.50106195880621629, 
0.7610856128934953, 0.48867910749651811, 1.4916202327561507, 
1.4792358704667123, 1.3678023497817615, 0.24103898320865291, 
0.16674970218893009, 0.055311343916739947, -0.97125610544820928, 
-0.87219982208013114, -0.83505677585154447, -0.99602161926354649, 
-0.87220086892873749, -0.83505316917650751, 0.019299496135769294, 
0.04406293523543612, -0.17881207642512514, -1.0826934750606338, 
-0.93410905627492413, -1.181750340736585, -1.107456559014304, 
-0.99601872291509919, -1.045550121608424, -1.6646436929918282, 
-1.8627561139464563, -1.3179488889310573, 0.27932080306296397, 
0.34123436410598412, 0.51457963476380342, -0.017843161170518762, 
0.019298787326566497, -0.10451732497886033, 1.0841526613345787, 
0.73745584154334576, 1.220355295696893, 0.41552619856328588, 
0.36599666019806409, 0.2917059161809587, 0.61363800527352463, 
0.63839739948119367, 0.68792541762270543, -1.9989598232789654, 
-1.9370515729251083, -2.0856343967630679, 0.94794754159519412, 
0.91080432131035793, 0.87365537290764705, 0.20503262686118115, 
0.22979403788218306, 0.30408523718588781, 1.3565565807724544, 
1.3317898258695244, 1.3813205815441036, 0.52696255968994066, 
0.78698621377721978, 0.51457970838024258, 1.5175208336398751, 
1.5051364713504367, 1.3937029506654859, 0.26693958409237734, 
0.19265030307265454, 0.081211944800464397, -0.94722077996955545, 
-0.84816449660147741, -0.81102145037289064, -0.97198629378489265, 
-0.84816554345008377, -0.81101784369785379, 0.043334821614423071, 
0.068098260714089892, -0.15477675094647136, -1.05865814958198, 
-0.91007373079627041, -1.1577150152579312, -1.0834212335356501, 
-0.97198339743644535, -1.0215147961297701, -1.6406083675131744, 
-1.8387207884678025, -1.2939135634524035, 0.30335612854161775, 
0.3652696895846379, 0.53861496024245714, 0.006192164308135014, 
0.043334112805220273, -0.080481999500206555, 1.1081879868132325, 
0.76149116702199948, 1.2443906211755469, 0.43956152404193966, 
0.39003198567671787, 0.31574124165961248, 0.63767333075217847, 
0.6624327249598474, 0.71196074310135926, -1.9749244978003115, 
-1.9130162474464547, -2.0615990712844146, 0.97198286707384784, 
0.93483964678901177, 0.89769069838630089, 0.22906795233983493, 
0.25382936336083683, 0.32812056266454159, 1.3805919062511083, 
1.355825151348178, 1.4053559070227575, 0.55099788516859449, 0.8110215392558735, 
0.53861503385889631, 1.5415561591185289, 1.5291717968290905, 
1.4177382761441397, 0.29097490957103112, 0.21668562855130832, 
0.10524727027911818), .Dim = c(54L, 54L)), `Fixed parameter estimates` = structure(list(
    m = 1:54, b1 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 60.566833074688056, 59.851976171545118, 59.523785709124461, 
    59.723137137426662, 59.801662325438762, 59.88955047117868, 
    59.97508248977681, 60.063335677517813, 60.196222934641639, 
    60.336217407951295, 60.151394138667179, 60.008838219695342, 
    59.7769537820812, 59.583775249839306, 59.719172676391096, 
    59.848435294175111, 60.053295800507883, 59.844115830753672, 
    59.650000308908126)), class = "data.frame", row.names = c(NA, 
-54L)), `Random parameter estimates` = structure(list(`Worker - (Intercept)` = c(0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.031755471612973513, 
2.7726735101934379, 3.1006930256137233, 2.5444994135561467, 2.5270013619435758, 
2.537471504201529, 2.5854491099087609, 2.6871114720526466, 2.6939091210890824, 
2.7564845233151609, 2.6284055919422631, 2.7095924112731744, 2.4264476216132822, 
2.3378520622031242, 2.6366191505165388, 2.926249176066277, 3.0301099686032318, 
3.4821902674384071, 3.9046247273958241)), class = "data.frame", row.names = c(NA, 
-54L)), Leverage = structure(c(36, 36, 36, 36, 36, 36, 36, 36, 
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 
37, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 
38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 
38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, 39, 
39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 
39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 
40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 
42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 
43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 
43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 
43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 
44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 
44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 
45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 
45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 
45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 
46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 
46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 
46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 
48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 
48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 
48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 
49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 
49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 
49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 
51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 
51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 
51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 
52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 
52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 
52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 
52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 
53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 
53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 
53, 53, 53, 53, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 54, 
54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 
54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 
54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 1, 
2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 19, 20, 21, 22, 23, 24, 26, 28, 
29, 30, 31, 32, 33, 37, 38, 39, 40, 41, 42, 46, 47, 48, 52, 53, 
54, 3, 2, 6, 5, 8, 7, 11, 10, 14, 15, 18, 16, 19, 20, 23, 22, 
26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 44, 43, 48, 46, 
51, 50, 54, 53, 52, 3, 2, 6, 5, 7, 8, 11, 10, 14, 15, 18, 16, 
19, 20, 22, 23, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 
44, 43, 48, 46, 51, 50, 54, 53, 24, 9, 3, 2, 6, 5, 7, 8, 11, 
10, 14, 15, 18, 16, 19, 20, 22, 23, 26, 25, 30, 29, 31, 32, 35, 
34, 39, 38, 40, 41, 44, 43, 48, 46, 51, 50, 54, 53, 24, 9, 52, 
3, 2, 6, 5, 7, 8, 11, 10, 14, 15, 18, 16, 19, 20, 22, 23, 26, 
25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 44, 43, 48, 46, 51, 
50, 54, 53, 24, 9, 52, 42, 3, 2, 6, 5, 7, 8, 11, 10, 14, 15, 
18, 16, 19, 20, 22, 23, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 
40, 41, 44, 43, 48, 46, 51, 50, 54, 53, 24, 9, 52, 42, 28, 3, 
2, 6, 5, 7, 8, 11, 10, 14, 15, 18, 16, 19, 20, 22, 23, 26, 25, 
30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 44, 43, 48, 46, 51, 50, 
54, 53, 24, 9, 52, 42, 28, 21, 3, 2, 6, 5, 7, 8, 11, 10, 14, 
15, 18, 16, 19, 20, 23, 22, 26, 25, 30, 29, 31, 32, 35, 34, 39, 
38, 40, 41, 44, 43, 48, 46, 51, 50, 54, 53, 24, 9, 52, 42, 28, 
21, 33, 3, 2, 6, 5, 7, 8, 11, 10, 14, 15, 18, 16, 19, 20, 23, 
22, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 44, 43, 48, 
46, 51, 50, 54, 53, 24, 9, 52, 42, 28, 21, 33, 47, 3, 2, 6, 5, 
8, 7, 11, 10, 14, 15, 18, 16, 19, 20, 23, 22, 26, 25, 30, 29, 
31, 32, 35, 34, 39, 38, 40, 41, 44, 43, 48, 46, 51, 50, 54, 53, 
24, 9, 52, 42, 28, 21, 33, 47, 37, 3, 2, 6, 5, 8, 7, 11, 10, 
14, 15, 18, 16, 19, 20, 23, 22, 26, 25, 30, 29, 31, 32, 35, 34, 
39, 38, 40, 41, 44, 43, 48, 46, 51, 50, 54, 53, 24, 52, 9, 42, 
28, 21, 33, 47, 37, 1, 3, 2, 6, 5, 8, 7, 11, 10, 14, 15, 18, 
16, 19, 20, 23, 22, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 
41, 44, 43, 48, 46, 51, 50, 54, 53, 24, 9, 52, 42, 28, 21, 33, 
47, 37, 1, 4, 3, 2, 6, 5, 7, 8, 11, 10, 14, 15, 18, 16, 19, 20, 
23, 22, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 44, 43, 
48, 46, 51, 50, 54, 53, 24, 9, 52, 42, 28, 21, 33, 47, 37, 1, 
4, 13, 3, 2, 6, 5, 7, 8, 11, 10, 14, 15, 18, 16, 19, 20, 22, 
23, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 44, 43, 48, 
46, 51, 50, 54, 53, 24, 9, 52, 42, 28, 21, 33, 47, 37, 1, 4, 
13, 12, 3, 2, 6, 5, 7, 8, 11, 10, 14, 15, 18, 16, 19, 20, 22, 
23, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 44, 43, 48, 
46, 51, 50, 54, 53, 24, 9, 52, 42, 28, 21, 33, 47, 1, 4, 37, 
13, 12, 27, 3, 2, 6, 5, 7, 8, 11, 10, 14, 15, 18, 16, 19, 20, 
22, 23, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 44, 43, 
48, 46, 51, 50, 54, 53, 24, 9, 52, 42, 28, 21, 33, 47, 37, 1, 
4, 13, 12, 27, 45, 3, 2, 6, 5, 7, 8, 11, 10, 14, 15, 18, 16, 
19, 20, 23, 22, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 40, 41, 
44, 43, 48, 46, 51, 50, 54, 53, 24, 9, 52, 42, 28, 21, 33, 47, 
37, 1, 4, 13, 27, 12, 45, 49, 3, 2, 6, 5, 8, 7, 11, 10, 14, 15, 
18, 16, 19, 20, 23, 22, 26, 25, 30, 29, 31, 32, 35, 34, 39, 38, 
40, 41, 44, 43, 48, 46, 51, 50, 54, 53, 24, 52, 9, 42, 28, 21, 
33, 47, 37, 1, 4, 13, 27, 12, 45, 49, 17, 3, 2, 6, 5, 7, 8, 11, 
10, 14, 15, 18, 16, 19, 20, 23, 22, 26, 25, 30, 29, 31, 32, 35, 
34, 39, 38, 40, 41, 44, 43, 48, 46, 51, 50, 54, 53, 24, 9, 52, 
42, 28, 21, 33, 47, 37, 1, 4, 13, 12, 27, 45, 49, 17, 36, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027777777777777776, 
0.027777777777777776, 0.027777777777777776, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.027027027027027029, 0.027027027027027029, 0.027027027027027029, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.026315789473684209, 
0.026315789473684209, 0.026315789473684209, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.02564102564102564, 
0.02564102564102564, 0.02564102564102564, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.025000000000000001, 0.025000000000000001, 0.025000000000000001, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.024390243902439025, 
0.024390243902439025, 0.024390243902439025, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023809523809523808, 
0.023809523809523808, 0.023809523809523808, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.023255813953488372, 0.023255813953488372, 0.023255813953488372, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022727272727272728, 
0.022727272727272728, 0.022727272727272728, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.022222222222222223, 
0.022222222222222223, 0.022222222222222223, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021739130434782608, 0.021739130434782608, 0.021739130434782608, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.021276595744680851, 
0.021276595744680851, 0.021276595744680851, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020833333333333332, 
0.020833333333333332, 0.020833333333333332, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.020408163265306121, 0.020408163265306121, 0.020408163265306121, 
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019607843137254902, 0.019607843137254902, 
0.019607843137254902, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.019230769230769232, 
0.019230769230769232, 0.019230769230769232, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018867924528301886, 0.018867924528301886, 
0.018867924528301886, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517, 0.018518518518518517, 0.018518518518518517, 
0.018518518518518517), .Dim = c(855L, 3L), .Dimnames = list(c("", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
"", "", "", "", "", ""), c("m", "Observation", "leverage"))), 
    `Modified Cook distance` = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0.38888320927087039, 0.040709165501305322, 
    0.016159321031236865, 0.0025523054306335604, 0.003344952628190909, 
    0.0033082570510451674, 0.003673215214708773, 0.0086586990132616146, 
    0.0098752890563102366, 0.017613844082149603, 0.010508631711240609, 
    0.028271313092004306, 0.019423151135219308, 0.00952799780033688, 
    0.0088406228166736239, 0.022443377364536166, 0.023168764146457976, 
    0.019680685418645726), Dims = list(N = 54L, Q = 1L, qvec = c(Worker = 1, 
    0, 0), ngrps = c(Worker = 6L, X = 1L, y = 1L), ncol = c(Worker = 1, 
    1, 1)), `t statistics` = structure(list(m = 1:54, `(Intercept)` = c(0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 72.911387258922005, 
    31.532641688291278, 30.279545238710813, 33.467495550872478, 
    33.982155770970188, 34.370489502855492, 34.517939148961354, 
    34.304552851695924, 34.544480978992048, 34.407261707339032, 
    35.0868288797842, 34.590463593574967, 36.232626089144468, 
    36.68483479032605, 34.94268901413934, 33.291601917675557, 
    32.689704030682101, 30.044598349742998, 27.813136277283196
    )), class = "data.frame", row.names = c("1", "2", "3", "4", 
    "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", 
    "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", 
    "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", 
    "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", 
    "46", "47", "48", "49", "50", "51", "52", "53", "54")), `Fit statistics` = structure(list(
        m = 1:54, AIC = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 220.70347638528074, 254.99239084646098, 
        259.99958132782001, 267.08646077036684, 273.07038745054876, 
        279.06249441494992, 285.02709231781711, 290.99897283642247, 
        297.50193232743493, 304.11075667841601, 311.76163220205956, 
        318.61083365104878, 326.90073304256163, 334.71238274350918, 
        341.37220770343225, 348.16662395431968, 356.36354167758765, 
        364.02416864353853, 371.89973459501778), BIC = c(0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 225.36952056974897, 
        259.74294766182931, 264.83233506575266, 271.999219249546, 
        278.0610723889377, 284.12913277729172, 290.16780851793004, 
        296.21198169127257, 302.78553267451559, 309.46332558017082, 
        317.18161967137053, 324.09675784051609, 332.45117584769179, 
        340.32598577623287, 347.04766859776413, 353.90269297060411, 
        362.15901857576063, 369.87789979928283, 377.81061033567414
        ), logLik = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, -107.35173819264037, -124.49619542323049, 
        -126.99979066390999, -130.54323038518342, -133.53519372527438, 
        -136.53124720747496, -139.51354615890855, -142.49948641821123, 
        -145.75096616371746, -149.055378339208, -152.88081610102978, 
        -156.30541682552439, -160.45036652128081, -164.35619137175459, 
        -167.68610385171613, -171.08331197715984, -175.18177083879382, 
        -179.01208432176927, -182.94986729750889)), class = "data.frame", row.names = c(NA, 
    -54L)), Call = quote(forsearch_lme(fixed = score ~ 1, data = Machines.O.A, 
        random = ~1 | Worker, formula = score ~ 1 | MW, response.column = 4, 
        initial.sample = 100, robs = 2)))

Try the forsearch package in your browser

Any scripts or data that you put into this service are public.

forsearch documentation built on April 4, 2025, 5:52 a.m.