Nothing
fplsr <- function (data, order = 6, type = c("simpls", "nipals"), unit.weights = TRUE,
weight = FALSE, beta = 0.1, interval = FALSE, method = c("delta",
"boota"), alpha = 0.05, B = 100, adjust = FALSE, backh = 10)
{
type = match.arg(type)
rawdata = t(data$y)
n = dim(rawdata)[1]
Xtrain = rawdata[1:(n - 1), ]
Ytrain = rawdata[2:n, ]
Xtest = as.numeric(rawdata[n, ])
if (interval == FALSE) {
if (type == "simpls") {
if (unit.weights == TRUE)
{
output = unitsimpls(Xtrain, Ytrain, Xtest, order, weight = weight, beta = beta)
fitted = t(output$T %*% t(output$Q)) + colMeans(Ytrain)
colnames(fitted) = rownames(Xtrain)
residuals = t(Ytrain) - fitted
Ypred_mat = as.matrix(output$Ypred)
colnames(Ypred_mat) = 1:ncol(Ypred_mat)
Xtrain_mat = as.matrix(colMeans(Xtrain))
colnames(Xtrain_mat) = 1:ncol(Xtrain_mat)
Ytrain_mat = as.matrix(colMeans(Ytrain))
colnames(Ytrain_mat) = 1:ncol(Ytrain_mat)
out = list(x1 = as.numeric(rownames(Xtrain)),
y1 = as.numeric(colnames(Xtrain)),
ypred = fts(1:dim(Xtrain)[2], t(Xtrain), xname = data$xname, yname = data$yname),
y = fts(1:dim(Ytrain)[2], t(Ytrain), xname = data$xname, yname = data$yname),
Ypred = fts(1:dim(Ytrain)[2], Ypred_mat, xname = data$xname, yname = data$yname),
B = output$B, P = output$P, Q = output$Q, T = output$T, R = output$R,
fitted = fts(1:dim(Xtrain)[2], fitted, xname = data$xname, yname = "Fitted values"),
residuals = fts(1:dim(Xtrain)[2], residuals, xname = data$xname, yname = "Residual"),
meanX = fts(1:dim(Xtrain)[2], Xtrain_mat, xname = data$xname, yname = data$yname),
meanY = fts(1:dim(Ytrain)[2], Ytrain_mat , xname = data$xname, yname = data$yname),
call = match.call())
return(structure(out, class = "fm"))
}
else {
output = simpls(Xtrain, Ytrain, Xtest, order, weight = weight, beta = beta)
fitted = t(output$T %*% t(output$Q)) + colMeans(Ytrain)
colnames(fitted) = rownames(Xtrain)
residuals = t(Ytrain) - fitted
Ypred_mat = as.matrix(output$Ypred)
colnames(Ypred_mat) = 1:ncol(Ypred_mat)
Xtrain_mat = as.matrix(colMeans(Xtrain))
colnames(Xtrain_mat) = 1:ncol(Xtrain_mat)
Ytrain_mat = as.matrix(colMeans(Ytrain))
colnames(Ytrain_mat) = 1:ncol(Ytrain_mat)
out = list(x1 = as.numeric(rownames(Xtrain)),
y1 = as.numeric(colnames(Xtrain)),
ypred = fts(1:dim(Xtrain)[2], t(Xtrain), xname = data$xname, yname = data$yname),
y = fts(1:dim(Ytrain)[2], t(Ytrain), xname = data$xname, yname = data$yname),
Ypred = fts(1:dim(Ytrain)[2], Ypred_mat, xname = data$xname, yname = data$yname),
B = output$B, P = output$P, Q = output$Q, T = output$T, R = output$R,
fitted = fts(1:dim(Xtrain)[2], fitted, xname = data$xname, yname = "Fitted values"),
residuals = fts(1:dim(Xtrain)[2], residuals, xname = data$xname, yname = "Residual"),
meanX = fts(1:dim(Xtrain)[2], Xtrain_mat, xname = data$xname, yname = data$yname),
meanY = fts(1:dim(Ytrain)[2], Ytrain_mat, xname = data$xname, yname = data$yname),
call = match.call())
return(structure(out, class = "fm"))
}
}
else {
output = nipals(Xtrain, Ytrain, Xtest, order, weight = weight, beta = beta)
Ypred_mat = matrix(output$Ypred, dim(Ytrain)[2], )
colnames(Ypred_mat) = 1:ncol(Ypred_mat)
Xtrain_mat = as.matrix(colMeans(Xtrain))
colnames(Xtrain_mat) = 1:ncol(Xtrain_mat)
Ytrain_mat = as.matrix(colMeans(Ytrain))
colnames(Ytrain_mat) = 1:ncol(Ytrain_mat)
fitted_mat_value = t(output$fitted.values[, , order])
colnames(fitted_mat_value) = rownames(Xtrain)
residual_mat_value = t(output$residuals[, , order])
colnames(residual_mat_value) = rownames(Xtrain)
out = list(x1 = as.numeric(rownames(Xtrain)), y1 = as.numeric(colnames(Xtrain)),
ypred = fts(1:dim(Xtrain)[2], t(Xtrain), xname = data$xname, yname = data$yname),
y = fts(1:dim(Ytrain)[2], t(Ytrain), xname = data$xname, yname = data$yname),
Ypred = fts(1:dim(Ytrain)[2], Ypred_mat, xname = data$xname, yname = data$yname),
P = output$P, Q = output$Q, B = output$B, T = output$T, R = output$R,
meanX = fts(1:dim(Xtrain)[2], Xtrain_mat, xname = data$xname, yname = data$yname),
meanY = fts(1:dim(Ytrain)[2], Ytrain_mat, xname = data$xname, yname = data$yname),
Yscores = output$Yscores, projection = output$projection,
fitted = fts(1:dim(Xtrain)[2], fitted_mat_value, xname = data$xname, yname = "Fitted values"),
residuals = fts(1:dim(Xtrain)[2], residual_mat_value, xname = data$xname, yname = "Residual"),
Xvar = output$Xvar, Xtotvar = output$Xtotvar,
call = match.call())
return(structure(out, class = "fm"))
}
}
else {
fplsrPI(t(Xtrain), t(Ytrain), Xtest, order, method = method,
alpha = alpha, B = B, weight = weight, beta = beta,
adjust = adjust, backh = backh)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.