Description Usage Arguments Details References Examples
Compare the spectral density operator of two Functional Time Series and localize frequencies at which they differ.
1 2 3 | Spec_compare_localize_freq(X, Y, B.T = (dim(X)[1])^(-1/5), W, autok = 2,
subgrid.density, verbose = 0, demean = FALSE, K.fixed = NA,
subgrid.density.relative.to.bandwidth)
|
X,Y |
The T \times nbasis matrices of containing the coordinates, expressed in some functional basis, of the two FTS that to be compared. expressed in a basis. |
B.T |
The bandwidth of frequencies over which the periodogram operator
is smoothed. If |
W |
The weight function used to smooth the periodogram operator. Set by default to be the Epanechnikov kernel |
autok |
A variable used to specify if (and which) pseudo-AIC criterion is used to select the truncation parameter K. |
subgrid.density |
Only used if |
verbose |
A variable to show the progress of the computations. By
default, |
demean |
A logical variable to choose if the FTS is centered before computing its spectral density operator. |
K.fixed |
The value of K used if |
subgrid.density.relative.to.bandwidth |
logical parameter to specify if
|
X,Y
must be of equal size T.len \times d, where T.len is the length of the time series, and d is the number of basis functions. Each row corresponds to a time point, and each column
corresponds to the coefficient of the corresponding basis function of the FTS.
autok=0
returns the p-values for K=1, …, \code{K.fixed}.
autok=1
uses the AIC
criterion of Tavakoli \& Panaretos
(2015), which is a generalization of the pseudo-AIC introduced in Panaretos
et al (2010).
autok=2
uses the AIC*
criterion of Tavakoli \& Panaretos
(2015), which is an extension of the AIC
criterion that takes into
account the difficulty associated with the estimation of eigenvalues of a
compact operator.
Tavakoli, Shahin and Panaretos, Victor M. "Detecting and Localizing Differences in Functional Time Series Dynamics: A Case Study in Molecular Biophysics", 2014, under revision
Panaretos, Victor M., David Kraus, and John H. Maddocks. "Second-order comparison of Gaussian random functions and the geometry of DNA minicircles." Journal of the American Statistical Association 105.490 (2010): 670-682.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ma.scale2=ma.scale1=c(-1.4,2.3,-2)
ma.scale2[3] = ma.scale1[3]+.0
a1=Generate_filterMA(10, 10, MA.len=3, ma.scale=ma.scale1)
a2=Generate_filterMA(10, 10, MA.len=3, ma.scale=ma.scale2)
X=Simulate_new_MA(a1, T.len=512, noise.type='wiener')
Y=Simulate_new_MA(a2, T.len=512, noise.type='wiener')
ans0=Spec_compare_localize_freq(X, Y, W=Epanechnikov_kernel, autok=2,
subgrid.density=10, verbose=0, demean=FALSE,
subgrid.density.relative.to.bandwidth=TRUE)
plot(ans0)
plot(ans0, method='fdr')
PvalAdjust(ans0, method='fdr') ## print FDR adjusted p-values
abline(h=.05, lty=3)
ans0=Spec_compare_localize_freq(X, Y, W=Epanechnikov_kernel, autok=0,
subgrid.density=10, verbose=0, demean=FALSE,
subgrid.density.relative.to.bandwidth=TRUE, K.fixed=4) ## fixed values of K
plot(ans0)
plot(ans0, 'fdr')
plot(ans0, 'holm')
PvalAdjust(ans0, method='fdr')
rm(ans0)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.