funFEM-package: Model-based clustering in the discriminative functional...

Description Details Author(s) References Examples

Description

The package provides the funFEM algorithm (Bouveyron et al., 2014) which allows to cluster functional data by modeling the curves within a common and discriminative functional subspace.

Details

Package: funFEM
Type: Package
Version: 1.0
Date: 2014-09-06
License: GPL-2

Author(s)

Charles Bouveyron

Maintainer: <charles.bouveyron@parisdescartes.fr>

References

C. Bouveyron, E. Côme and J. Jacques, The discriminative functional mixture model for the analysis of bike sharing systems, Preprint HAL n.01024186, University Paris Descartes, 2014.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# Clustering the well-known "Canadian temperature" data (Ramsay & Silverman)
basis <- create.bspline.basis(c(0, 365), nbasis=21, norder=4)
fdobj <- smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"],basis,
        fdnames=list("Day", "Station", "Deg C"))$fd
res = funFEM(fdobj,K=4)

# Visualization of the partition and the group means
par(mfrow=c(1,2))
plot(fdobj,col=res$cls,lwd=2,lty=1)
fdmeans = fdobj; fdmeans$coefs = t(res$prms$my)
plot(fdmeans,col=1:max(res$cls),lwd=2)

Example output

Loading required package: MASS
Loading required package: fda
Loading required package: splines
Loading required package: Matrix

Attaching package: 'fda'

The following object is masked from 'package:graphics':

    matplot

Loading required package: elasticnet
Loading required package: lars
Loaded lars 1.2

The "ward" method has been renamed to "ward.D"; note new "ward.D2"
[1] "done"
[1] "done"

funFEM documentation built on Oct. 27, 2021, 5:08 p.m.