Description Usage Arguments Value Examples
View source: R/predict.funHDDC.R
It provides predictions for a new functional dataset using the funHDDC model you train.
1 2 |
object |
An object produced by funHDDC function |
newdata |
In the univariate case: a functional data object produced by the fda package, in the multivariate case: a list of functional data objects, for which you want to predict the group membership from the model. |
... |
Some additional parameters. |
class |
The clustering partition. |
t |
The probability of each individual to belong to each cluster. |
L |
The loglikelihood. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | ##Univariate example
data("trigo")
basis<- create.bspline.basis(c(0,1), nbasis=25)
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
z<-sample(1:100,0.8*100,replace=FALSE)
var1_train<-smooth.basis(argvals=seq(0,1,length.out = 100),y=t(trigo[z,1:100]),
fdParobj=basis)$fd
var1_test<-smooth.basis(argvals=seq(0,1,length.out = 100),y=t(trigo[-z,1:100]),
fdParobj=basis)$fd
model<-funHDDC(var1_train,K=2)
pred<-predict(model,var1_test)
##Multivariate example
data("triangle")
basis<- create.bspline.basis(c(1,21), nbasis=25)
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
z<-sample(1:100,0.8*100,replace=FALSE)
var1_train<-smooth.basis(argvals=seq(1,21,length.out = 101),y=t(triangle[z,1:101]),
fdParobj=basis)$fd
var1_test<-smooth.basis(argvals=seq(1,21,length.out = 101),y=t(triangle[-z,1:101]),
fdParobj=basis)$fd
var2_train<-smooth.basis(argvals=seq(1,21,length.out = 101),y=t(triangle[z,102:202]),
fdParobj=basis)$fd
var2_test<-smooth.basis(argvals=seq(1,21,length.out = 101),y=t(triangle[-z,102:202]),
fdParobj=basis)$fd
model<-funHDDC(list(var1_train,var2_train),K=3)
pred<-predict(model,list(var1_test,var2_test))
##NOT RUN: another example on Canadian data
##Clustering the "Canadian temperature" data (Ramsey & Silverman): univariate case
daybasis65 <- create.fourier.basis(c(0, 365), nbasis=65, period=365)
#z<-sample(1:35,0.9*35,replace=FALSE)
#daytempfd_train <- smooth.basis(day.5, CanadianWeather$dailyAv[,z,"Temperature.C"],
#daybasis65,fdnames=list("Day", "Station", "Deg C"))$fd
#daytempfd_test <- smooth.basis(day.5, CanadianWeather$dailyAv[,-z,"Temperature.C"],
#daybasis65,fdnames=list("Day", "Station", "Deg C"))$fd
#model<-funHDDC(daytempfd_train,K=3)
#pred<-predict.funHDDC(model,daytempfd_test)
##Clustering the "Canadian temperature" data (Ramsey & Silverman): multivariate case
#daybasis65 <- create.fourier.basis(c(0, 365), nbasis=65, period=365)
#z<-sample(1:35,0.9*35,replace=FALSE)
#daytempfd_train <- smooth.basis(day.5, CanadianWeather$dailyAv[,z,"Temperature.C"],
#daybasis65,fdnames=list("Day", "Station", "Deg C"))$fd
#daytempfd_test <- smooth.basis(day.5, CanadianWeather$dailyAv[,-z,"Temperature.C"],
#daybasis65,fdnames=list("Day", "Station", "Deg C"))$fd
#dayprecfd_train<-smooth.basis(day.5, CanadianWeather$dailyAv[,z,"Precipitation.mm"],
#daybasis65,fdnames=list("Day", "Station", "Mm"))$fd
#dayprecfd_test<-smooth.basis(day.5, CanadianWeather$dailyAv[,-z,"Precipitation.mm"],
#daybasis65,fdnames=list("Day", "Station", "Mm"))$fd
#model<-funHDDC(list(daytempfd_train,dayprecfd_train),K=3)
#pred<-predict.funHDDC(model,list(daytempfd_test,dayprecfd_test))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.