inst/doc/model_power_curves.R

## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup--------------------------------------------------------------------
library(funkycells)

## ----define_functions, echo=FALSE---------------------------------------------
# This indicates if power curves should be built or saved loaded
#   WARNING, this takes a long time to run!!
#     If you wish to run, I recommend you run the code in chucks
full_run <- FALSE  # This creates and saves figures as in paper
path <- paste0(tempdir(),"/model_power_curves/")

## ----common_definitions-------------------------------------------------------
nSims <- 100
changes <- 1 / 40 * c(
  4, 3, 2, 1.5, 1.25,
  1,
  1 / 1.25, 1 / 1.5, 1 / 2, 1 / 3, 1 / 4
)
baseline <- changes[6]

## ----cells_small, eval=full_run-----------------------------------------------
#  cells <- paste0("c", 1:4)
#  cells_interactions <- rbind(
#    data.frame(t(combn(cells, 2))),
#    data.frame("X1" = cells, "X2" = cells)
#  )

## ----gen_small, eval=full_run-------------------------------------------------
#  info <- rfdata <- list()
#  
#  for (c in 1:length(changes)) {
#    cat(paste0("\n- Change: ", changes[c], "\n-- (", nSims, "): "))
#  
#    set.seed(c * 123)
#  
#    for (i in 1:nSims) {
#      cat(paste0(i, ", "))
#      # Generate
#      dat <- simulatePP(
#        agentVarData =
#          data.frame(
#            "outcome" = c(0, 1),
#            "c1" = c(0, 0),
#            "c2" = c(baseline, changes[c])^2,
#            "c3" = c(1 / 50, 1 / 50),
#            "c4" = c(1 / 10, 1 / 10)
#          ),
#        agentKappaData = data.frame(
#          "agent" = paste0("c", 1:4),
#          "clusterAgent" = c(NA, "c1", "c1", NA),
#          "kappa" = c(
#            30,
#            5, 5,
#            30
#          )
#        ),
#        unitsPerOutcome = 17,
#        replicatesPerUnit = 1,
#        silent = T
#      )
#      pcaData <- getKsPCAData(
#        data = dat, replicate = "replicate",
#        xRange = c(0, 1), yRange = c(0, 1),
#        agents_df = cells_interactions,
#        silent = TRUE
#      )
#      pcaMeta <- simulateMeta(pcaData,
#        metaInfo = data.frame(
#          "var" = c("age"),
#          "rdist" = c("rnorm"),
#          "outcome_0" = c("25"),
#          "outcome_1" = c("25")
#        )
#      )
#      info[[i]] <- list(dat, pcaData, pcaMeta)
#      rfdata[[i]] <- pcaMeta
#    }
#  
#    ## Save RDS (To temp directory)
#    saveRDS(info, paste0(path, "change_sim_small_info", c, ".rds"))
#    saveRDS(rfdata, paste0(path, "change_sim_small_rfdata", c, ".rds"))
#  }

## ----model_small, eval=full_run-----------------------------------------------
#  for (c in 1:length(changes)) {
#    cat(paste0("\n- Change: ", changes[c], "\n-- (", nSims, "): "))
#  
#    rfdat <- readRDS(paste0(path, "change_sim_small_rfdata", c, ".rds"))
#  
#    VarVI_both <- VarVI_noi <- VarVI_int <-
#      VarVI_maxint <- VarVI_bothmax <-
#      data.frame("var" = c(
#        "age",
#        paste(cells_interactions$X1,
#          cells_interactions$X2,
#          sep = "_"
#        )
#      ))
#  
#    set.seed(c * 12345)
#  
#    for (i in 1:nSims) {
#      cat(paste0(i, ", "))
#      # Generate
#  
#      rfcv <- funkyModel(
#        data = rfdat[[i]],
#        outcome = "outcome", unit = "unit",
#        metaNames = c("age"), silent = TRUE
#      )
#  
#      # Org Data
#      tmp <- rfcv$VariableImportance[, c("var", "est", "sd")]
#      tmp <- tmp[order(-tmp$est), ]
#      rownames(tmp) <- NULL
#      tmp$CutoffNoise <- rfcv$NoiseCutoff
#      tmp$CutoffInterp <- rfcv$InterpolationCutoff
#      tmp$CutoffMaxInterp <- max(rfcv$InterpolationCutoff)
#  
#      # Above Lines
#      tmp$TF_intCO <- (tmp$est > tmp$CutoffInterp)
#      tmp$TF_noiCO <- (tmp$est > tmp$CutoffNoise)
#      tmp[[paste0("iter", i)]] <- tmp$TF_intCO * tmp$TF_noiCO
#      VarVI_both <- merge(VarVI_both, tmp[, c("var", paste0("iter", i))])
#      tmp[[paste0("iter", i)]] <- tmp$TF_noiCO
#      VarVI_noi <- merge(VarVI_noi, tmp[, c("var", paste0("iter", i))])
#      tmp[[paste0("iter", i)]] <- tmp$TF_intCO
#      VarVI_int <- merge(VarVI_int, tmp[, c("var", paste0("iter", i))])
#  
#      tmp$TF_maxIntCO <- (tmp$est > tmp$CutoffMaxInterp)
#      tmp[[paste0("iter", i)]] <- tmp$TF_maxIntCO * tmp$TF_noiCO
#      VarVI_bothmax <- merge(VarVI_bothmax, tmp[, c("var", paste0("iter", i))])
#      tmp[[paste0("iter", i)]] <- tmp$TF_maxIntCO
#      VarVI_maxint <- merge(VarVI_maxint, tmp[, c("var", paste0("iter", i))])
#    }
#  
#    ## Save RDS
#  
#    results[[paste0("Change_", changes[c])]] <-
#      list(
#        "dat" = tmp, "fullDat" = list(
#          rfcv$VariableImportance,
#          rfcv$NoiseCutoff,
#          rfcv$InterpolationCutoff
#        ),
#        "VarVI_both" = VarVI_both,
#        "VarVI_noi" = VarVI_noi,
#        "VarVI_int" = VarVI_int,
#        "VarVI_bothmax" = VarVI_bothmax,
#        "VarVI_maxint" = VarVI_maxint
#      )
#  
#    ## Save RDS
#    saveRDS(results, paste0(path, "change_sim_small_", c, ".rds"))
#  }

## ----summarize_small, eval=full_run-------------------------------------------
#  data <- list()
#  for (i in 1:11) {
#    data <- append(
#      data,
#      readRDS(paste0(path, "change_sim_small_", i, ".rds"))
#    )
#  }
#  
#  data_summary <- data.frame(
#    "var" = changes, "noi" = NA, "int" = NA,
#    "both" = NA, "max" = NA, "bothmax" = NA
#  )
#  
#  for (i in 1:length(data)) {
#    data_summary[i, "noi"] <-
#      sum(data[[i]]$VarVI_noi[data[[i]]$VarVI_noi$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_noi[data[[i]]$VarVI_noi$var == "c1_c2", -1])
#  
#    data_summary[i, "int"] <-
#      sum(data[[i]]$VarVI_int[data[[i]]$VarVI_int$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_int[data[[i]]$VarVI_int$var == "c1_c2", -1])
#  
#    data_summary[i, "max"] <-
#      sum(data[[i]]$VarVI_max[data[[i]]$VarVI_max$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_max[data[[i]]$VarVI_max$var == "c1_c2", -1])
#  
#    data_summary[i, "both"] <-
#      sum(data[[i]]$VarVI_both[data[[i]]$VarVI_both$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_both[data[[i]]$VarVI_both$var == "c1_c2", -1])
#  
#    # (max either)
#    data_summary[i, "bothmax"] <-
#      sum(data[[i]]$VarVI_bothmax[data[[i]]$VarVI_bothmax$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_bothmax[data[[i]]$VarVI_bothmax$var == "c1_c2", -1])
#  }
#  
#  data_plot <- tidyr::pivot_longer(data_summary, cols = noi:bothmax)

## ----show_small, eval=full_run------------------------------------------------
#  plot_sm <-
#    ggplot2::ggplot(
#      data_plot[data_plot$name %in% c("noi", "int", "both"), ],
#      ggplot2::aes(x = var, y = value, color = name, group = name)
#    ) +
#    ggplot2::geom_line(linewidth = 1.25) +
#    ggplot2::geom_point(size = 3) +
#    ggplot2::geom_vline(
#      ggplot2::aes(xintercept = baseline),
#      color = "black", linetype = "dashed", linewidth = 1.25
#    ) +
#    ggplot2::geom_hline(
#      ggplot2::aes(yintercept = 0.05),
#      linetype = "dotted"
#    ) +
#    ggplot2::theme_bw() +
#    ggplot2::theme(
#      axis.text = ggplot2::element_text(size = 18),
#      axis.title = ggplot2::element_text(size = 22),
#      legend.position = "none",
#      legend.title = ggplot2::element_text(size = 22),
#      legend.text = ggplot2::element_text(size = 18)
#    ) +
#    ggplot2::xlab("Standard Deviation") +
#    ggplot2::ylab(NULL) +
#    ggplot2::scale_x_log10() +
#    ggplot2::scale_color_discrete(type = c("#40e0d0", "orange", "red"))
#  
#  plot_sm

## ----show_fake_small, eval=!full_run,echo=!full_run---------------------------
knitr::include_graphics("img/change_sm_curve_show.png")

## ----cells_large, eval=full_run-----------------------------------------------
#  cells <- paste0("c", 1:16)
#  cells_interactions <- rbind(
#    data.frame(t(combn(cells, 2))),
#    data.frame("X1" = cells, "X2" = cells)
#  )

## ----gen_large, eval=full_run-------------------------------------------------
#  info <- rfdata <- list()
#  
#  for (c in 1:length(changes)) {
#    cat(paste0("\n- Change: ", changes[c], "\n-- (", nSims, "): "))
#  
#    set.seed(c * 1234)
#  
#    for (i in 1:nSims) {
#      cat(paste0(i, ", "))
#      # Generate
#      dat <- simulatePP(
#        agentVarData =
#          data.frame(
#            "outcome" = c(0, 1),
#            "c1" = c(0, 0),
#            "c2" = c(baseline, changes[c])^2, "c3" = c(1 / 50, 1 / 50),
#            "c4" = c(0, 0), "c5" = c(0, 0), "c6" = c(0, 0),
#            "c7" = c(0, 0), "c8" = c(0, 0), "c9" = c(0, 0),
#            "c10" = c(0, 0), "c11" = c(0, 0), "c12" = c(1 / 30, 1 / 30)^2,
#            "c13" = c(0, 0), "c14" = c(1 / 50, 1 / 50)^2,
#            "c15" = c(1 / 100, 1 / 100)^2, "c16" = c(1 / 10, 1 / 10)
#          ),
#        agentKappaData = data.frame(
#          "agent" = paste0("c", 1:16),
#          "clusterAgent" = c(NA, "c1", "c1", rep(NA, 10), rep("c1", 3)),
#          "kappa" = c(30, 5, 5, rep(30, 10), rep(5, 3))
#        ),
#        unitsPerOutcome = 17,
#        replicatesPerUnit = 1,
#        silent = T
#      )
#      pcaData <- getKsPCAData(
#        data = dat, replicate = "replicate",
#        xRange = c(0, 1), yRange = c(0, 1),
#        agents_df = cells_interactions,
#        silent = TRUE
#      )
#      pcaMeta <- simulateMeta(pcaData,
#        metaInfo = data.frame(
#          "var" = c("age"),
#          "rdist" = c("rnorm"),
#          "outcome_0" = c("25"),
#          "outcome_1" = c("25")
#        )
#      )
#      info[[i]] <- list(dat, pcaData, pcaMeta)
#      rfdata[[i]] <- pcaMeta
#    }
#  
#    ## Save RDS
#    saveRDS(info, paste0(path, "change_sim_large_info", c, ".rds"))
#    saveRDS(rfdata, paste0(path, "change_sim_large_rfdata", c, ".rds"))
#  }

## ----model_large, eval=full_run-----------------------------------------------
#  loop <- 1:nSims # Often in sets of 10,
#  
#  for (c in 1:length(changes)) {
#    cat(paste0("\n- Change: ", changes[c], "\n-- (", nSims, "): "))
#  
#    rfdat <- readRDS(paste0(path, "change_sim_large_rfdata", c, ".rds"))
#  
#    VarVI_both <- VarVI_noi <- VarVI_int <-
#      VarVI_maxint <- VarVI_bothmax <-
#      data.frame("var" = c(
#        "age",
#        paste(cells_interactions$X1,
#          cells_interactions$X2,
#          sep = "_"
#        )
#      ))
#  
#    for (i in loop) {
#      cat(paste0(i - min(loop) + 1, ", "))
#      # Generate
#  
#      # Move into loop so this loop can be split to allow additional computation
#      set.seed(c * 12345 + i)
#  
#      rfcv <- funkyModel(
#        data = rfdat[[i]],
#        outcome = "outcome", unit = "unit",
#        metaNames = c("age"), silent = TRUE
#      )
#  
#      # Org Data
#      tmp <- rfcv$VariableImportance[, c("var", "est", "sd")]
#      tmp <- tmp[order(-tmp$est), ]
#      rownames(tmp) <- NULL
#      tmp$CutoffNoise <- rfcv$NoiseCutoff
#      tmp$CutoffInterp <- rfcv$InterpolationCutoff
#      tmp$CutoffMaxInterp <- max(rfcv$InterpolationCutoff)
#  
#      # Above Lines
#      tmp$TF_intCO <- (tmp$est > tmp$CutoffInterp)
#      tmp$TF_noiCO <- (tmp$est > tmp$CutoffNoise)
#      tmp[[paste0("iter", i)]] <- tmp$TF_intCO * tmp$TF_noiCO
#      VarVI_both <- merge(VarVI_both, tmp[, c("var", paste0("iter", i))])
#      tmp[[paste0("iter", i)]] <- tmp$TF_noiCO
#      VarVI_noi <- merge(VarVI_noi, tmp[, c("var", paste0("iter", i))])
#      tmp[[paste0("iter", i)]] <- tmp$TF_intCO
#      VarVI_int <- merge(VarVI_int, tmp[, c("var", paste0("iter", i))])
#  
#      tmp$TF_maxIntCO <- (tmp$est > tmp$CutoffMaxInterp)
#      tmp[[paste0("iter", i)]] <- tmp$TF_maxIntCO * tmp$TF_noiCO
#      VarVI_bothmax <- merge(VarVI_bothmax, tmp[, c("var", paste0("iter", i))])
#      tmp[[paste0("iter", i)]] <- tmp$TF_maxIntCO
#      VarVI_maxint <- merge(VarVI_maxint, tmp[, c("var", paste0("iter", i))])
#    }
#  
#    ## Save RDS
#  
#    results[[paste0("Change_", changes[c])]] <-
#      list(
#        "dat" = tmp, "fullDat" = list(
#          rfcv$VariableImportance,
#          rfcv$NoiseCutoff,
#          rfcv$InterpolationCutoff
#        ),
#        "VarVI_both" = VarVI_both,
#        "VarVI_noi" = VarVI_noi,
#        "VarVI_int" = VarVI_int,
#        "VarVI_bothmax" = VarVI_bothmax,
#        "VarVI_maxint" = VarVI_maxint
#      )
#  
#    ## Save RDS
#    #   Min/Max loop due to our running of splitting the inner loop to
#    #     run multiple instances at once.
#    saveRDS(results, paste0(
#      path, "change_sim_large_", c, "_",
#      min(loop), max(loop), "_", ".rds"
#    ))
#  }

## ----summarize_large, eval=full_run-------------------------------------------
#  data <- list()
#  # Breaks come
#  breaks <- c("1100") # This will change based on previous loop and saving
#  for (i in 1:11) {
#    tmpData <- list()
#    for (j in 1:length(breaks)) {
#      iterData <- readRDS(
#        paste0(
#          path, "change_sim_large_",
#          i, "_", breaks[j], "_", ".rds"
#        )
#      )
#      # Next part may be needed depending on break scheme to recombine
#      if (j == 1) {
#        tmpData[[names(iterData)]] <-
#          list(
#            dat = iterData[[1]]$dat[, -9],
#            VarVI_both = iterData[[1]]$VarVI_both,
#            VarVI_noi = iterData[[1]]$VarVI_noi,
#            VarVI_int = iterData[[1]]$VarVI_int,
#            VarVI_bothmax = iterData[[1]]$VarVI_bothmax,
#            VarVI_maxint = iterData[[1]]$VarVI_maxint,
#            VarVI_both = iterData[[1]]$VarVI_both
#          )
#      } else {
#        tmpData[[names(iterData)]] <-
#          list(
#            dat = rbind(
#              tmpData[[1]]$dat,
#              iterData[[1]]$dat[, -9]
#            ),
#            VarVI_both = merge(
#              tmpData[[1]]$VarVI_both,
#              iterData[[1]]$VarVI_both
#            ),
#            VarVI_noi = merge(
#              tmpData[[1]]$VarVI_noi,
#              iterData[[1]]$VarVI_noi
#            ),
#            VarVI_int = merge(
#              tmpData[[1]]$VarVI_int,
#              iterData[[1]]$VarVI_int
#            ),
#            VarVI_bothmax = merge(
#              tmpData[[1]]$VarVI_bothmax,
#              iterData[[1]]$VarVI_bothmax
#            ),
#            VarVI_maxint = merge(
#              tmpData[[1]]$VarVI_maxint,
#              iterData[[1]]$VarVI_maxint
#            ),
#            VarVI_both = merge(
#              tmpData[[1]]$VarVI_both,
#              iterData[[1]]$VarVI_both
#            )
#          )
#      }
#    }
#  
#    data <- append(data, tmpData)
#  }
#  
#  data_summary <- data.frame(
#    "var" = changes, "noi" = NA, "int" = NA,
#    "both" = NA, "max" = NA, "bothmax" = NA
#  )
#  
#  for (i in 1:length(data)) {
#    data_summary[i, "noi"] <-
#      sum(data[[i]]$VarVI_noi[data[[i]]$VarVI_noi$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_noi[data[[i]]$VarVI_noi$var == "c1_c2", -1])
#  
#    data_summary[i, "int"] <-
#      sum(data[[i]]$VarVI_int[data[[i]]$VarVI_int$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_int[data[[i]]$VarVI_int$var == "c1_c2", -1])
#  
#    data_summary[i, "max"] <-
#      sum(data[[i]]$VarVI_max[data[[i]]$VarVI_max$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_max[data[[i]]$VarVI_max$var == "c1_c2", -1])
#  
#    data_summary[i, "both"] <-
#      sum(data[[i]]$VarVI_both[data[[i]]$VarVI_both$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_both[data[[i]]$VarVI_both$var == "c1_c2", -1])
#  
#    # (max either)
#    data_summary[i, "bothmax"] <-
#      sum(data[[i]]$VarVI_bothmax[data[[i]]$VarVI_bothmax$var == "c1_c2", -1]) /
#        length(data[[i]]$VarVI_bothmax[data[[i]]$VarVI_bothmax$var == "c1_c2", -1])
#  }
#  
#  
#  data_plot <- tidyr::pivot_longer(data_summary, cols = noi:bothmax)

## ----show_large, eval=full_run------------------------------------------------
#  plot_lg <-
#    ggplot2::ggplot(
#      data_plot[data_plot$name %in% c("noi", "int", "both"), ],
#      ggplot2::aes(x = var, y = value, color = name, group = name)
#    ) +
#    ggplot2::geom_line(linewidth = 1.25) +
#    ggplot2::geom_point(size = 3) +
#    ggplot2::geom_vline(
#      ggplot2::aes(xintercept = baseline),
#      color = "black", linetype = "dashed", linewidth = 1.25
#    ) +
#    ggplot2::geom_hline(
#      ggplot2::aes(yintercept = 0.05),
#      linetype = "dotted"
#    ) +
#    ggplot2::theme_bw() +
#    ggplot2::theme(
#      axis.text = ggplot2::element_text(size = 18),
#      axis.title = ggplot2::element_text(size = 22),
#      legend.position = "none",
#      legend.title = ggplot2::element_text(size = 22),
#      legend.text = ggplot2::element_text(size = 18)
#    ) +
#    ggplot2::xlab("Standard Deviation") +
#    ggplot2::ylab(NULL) +
#    ggplot2::scale_x_log10() +
#    ggplot2::scale_color_discrete(type = c("#40e0d0", "orange", "red"))
#  
#  plot_lg

## ----show_fake_large, eval=!full_run,echo=!full_run---------------------------
knitr::include_graphics("img/change_lg_curve_show.png")

Try the funkycells package in your browser

Any scripts or data that you put into this service are public.

funkycells documentation built on Aug. 9, 2023, 5:10 p.m.