funreg: Functional Regression for Irregularly Timed Data
Version 1.2

Performs functional regression, and some related approaches, for intensive longitudinal data (see the book by Walls & Schafer, 2006, Models for Intensive Longitudinal Data, Oxford) when such data is not necessarily observed on an equally spaced grid of times. The approach generally follows the ideas of Goldsmith, Bobb, Crainiceanu, Caffo, and Reich (2011) and the approach taken in their sample code, but with some modifications to make it more feasible to use with long rather than wide, non-rectangular longitudinal datasets with unequal and potentially random measurement times. It also allows easy plotting of the correlation between the smoothed covariate and the outcome as a function of time, which can add additional insights on how to interpret a functional regression. Additionally, it also provides several permutation tests for the significance of the functional predictor. The heuristic interpretation of ``time'' is used to describe the index of the functional predictor, but the same methods can equally be used for another unidimensional continuous index, such as space along a north-south axis. The development of this package was part of a research project supported by Award R03 CA171809-01 from the National Cancer Institute and Award P50 DA010075 from the National Institute on Drug Abuse. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Drug Abuse, the National Cancer Institute, or the National Institutes of Health.

AuthorJohn Dziak [aut, cre], Mariya Shiyko [aut]
Date of publication2016-08-24 18:38:32
MaintainerJohn Dziak <jjd264@psu.edu>
LicenseGPL (>= 2)
Version1.2
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("funreg")

Popular man pages

coef.funreg: coef method for funreg object
fitted.funreg: fitted method for funreg object
funreg: Perform penalized functional regression
marginal.cor.funeigen: Calculate marginal correlations with response, from a...
plot.funeigen: plot method for funeigen object
plot.funreg: plot method for funreg object
print.funreg: print method for funreg object
See all...

All man pages Function index File listing

Man pages

coef.funreg: coef method for funreg object
fitted.funeigen: fitted method for funeigen object
fitted.funreg: fitted method for funreg object
funeigen: Perform eigenfunction decomposition on functional covariate
funreg: Perform penalized functional regression
funreg.permutation: Do a permutation test for functional regression
generate.data.for.demonstration: Generate data for some demonstration examples
make.funreg.basis: Make basis for functional regression (for internal use by...
marginal.cor: Calculate marginal correlations with response
marginal.cor.funeigen: Calculate marginal correlations with response, from a...
num.functional.covs.in.model: Count the functional covariates in a model (for internal use...
plot.funeigen: plot method for funeigen object
plot.funreg: plot method for funreg object
print.funreg: print method for funreg object
redo.funreg: Redo a funreg with different data (for internal use by...
SampleFunregData: Sample dataset for funreg
summary.funreg: summary method for funreg object

Functions

SampleFunregData Man page
coef.funreg Man page Source code
fitted.funeigen Man page Source code
fitted.funreg Man page Source code
funeigen Man page Source code
funreg Man page Source code
funreg.permutation Man page Source code
generate.data.for.demonstration Man page Source code
make.funreg.basis Man page Source code
marginal.cor Man page Source code
marginal.cor.funeigen Man page Source code
num.functional.covs.in.model Man page Source code
plot.funeigen Man page Source code
plot.funreg Man page Source code
print.funreg Man page Source code
redo.funreg Man page Source code
summary.funreg Man page Source code

Files

NAMESPACE
data
data/SampleFunregData.rda
R
R/FunRegAutoRun.r
R/FittedFunReg.r
R/PrintFunReg.r
R/GenerateDataForDemonstration.r
R/NumFunctionalCovsInModel.r
R/FunRegPermutation.r
R/FunEigen.r
R/FittedFunEigen.r
R/MarginalCorFuneigen.r
R/FunReg.r
R/MakeFunRegBasis.r
R/CoefFunReg.r
R/PlotFunReg.r
R/SampleFunregData-data.r
R/MarginalCor.r
R/RedoFunReg.r
R/PlotFunEigen.r
R/SummaryFunReg.r
MD5
DESCRIPTION
man
man/summary.funreg.Rd
man/make.funreg.basis.Rd
man/plot.funreg.Rd
man/fitted.funreg.Rd
man/marginal.cor.funeigen.Rd
man/funreg.Rd
man/SampleFunregData.Rd
man/num.functional.covs.in.model.Rd
man/plot.funeigen.Rd
man/marginal.cor.Rd
man/funreg.permutation.Rd
man/generate.data.for.demonstration.Rd
man/coef.funreg.Rd
man/fitted.funeigen.Rd
man/redo.funreg.Rd
man/funeigen.Rd
man/print.funreg.Rd
funreg documentation built on May 19, 2017, 9:39 a.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.