Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/plot.fs.class.R
S3 Method to plot
objects of class fs.class.
Graphic display of the robust Mokken scale analysis by means of the Forward Search.
Seven different plots can be obtained.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## S3 method for class 'fs.class'
plot(
x,
type = "objective",
observations = all.observations,
id.observation = FALSE,
items = all.items,
id.item = FALSE,
step = default.step,
reference.step = default.reference.step,
id.scale = default.scale,
tukey.fences = TRUE,
add = FALSE,
n0 = FALSE,
n1 = FALSE,
n2 = FALSE,
lower.c = default.lower.c,
col = default.col,
lwd = default.lwd,
lty = default.lty,
ylim = default.ylim,
xlim = default.xlim,
...)
|
x |
Object of |
type |
Type of forward plot: |
observations |
Vector containing the observations to show. The default uses all observations. |
id.observation |
Vector containing the observation(s) for which the results are plotted in a different color
and the identity of the observation(s) is added to the plot. |
items |
Vector containing the items for which the results are plotted.
Default the results for all items are depicted. |
id.item |
Logical, if |
step |
Single number or vector containing the subsample size.
Default is sample size N. |
reference.step |
Single number containing the subsample size.
Default is |
id.scale |
Numeric indicating which scale to show; |
tukey.fences |
Logical, if |
add |
Logical, if |
n0 |
Logical, indicating whether n0 should be added to the plots. Default is |
n1 |
Default is |
n2 |
Logical, indicating whether n2 should be added to the plots. Default is |
lower.c |
Numeric scaling criterium; 0 <= |
col |
Colour to be used for the lines. |
lwd |
Line width |
lty |
Line type |
ylim, xlim |
Range of |
... |
Other arguments are ignored. |
add=TRUE
for type="restscore"
can only be used for one item (e.g., items=1
).
Returns a graph.
W. P. Zijlstra w.p.zijlstra@uvt.nl
Zijlstra, W. P., Van der Ark, L. A., and Sijtsma, K. (2011). Robust Mokken scale analysis by means of the forward search algorithm for outlier detection. Multivariate Behavioral Research, 46, 58-89.
fs.MSA
, fs.MSA.n1
, plot.fs.n1.class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # Retrieve data (588 observations)
data(acs)
# Run Forward Search for Mokken scale analysis starting with
# 550 observations in the initial subsample size to save time
fwdmsa.res <- fs.MSA(acs, initial.subsample.size=550)
# Plot the objective function
plot(fwdmsa.res, xlim = c(540,588))
# Plot the objective function for observations 1, 2, and 4
plot(fwdmsa.res, id.observation = c(1,2,4), add=TRUE, col=2, xlim = c(540,588))
# Gap plot for subsamples 570 through 588
plot(fwdmsa.res, type = "gap", ylim = c(0,4), xlim = c(570,588))
# Follow-up plots
plot(fwdmsa.res, type="followup", step=560:565, reference.step=560, xlim = c(540,588))
# Min-excl plot.
plot(fwdmsa.res, type = "minexcl", n2=TRUE, xlim=c(540,588))
# Plot of number of scales
plot(fwdmsa.res, type="num.scale", n2=TRUE, xlim=c(540,588))
# Item entry plot for the longest scale
plot(fwdmsa.res, type="scale", id.scale=1, n2=TRUE, xlim=c(540,588))
# Plot of estimated IRF of item 1
plot(fwdmsa.res, type="IRF", items=1, n2=TRUE, xlim=c(540,588))
# Plot of coefH
plot(fwdmsa.res, type="coefH", n2=TRUE, ylim=c(.1,.8), xlim=c(540,588))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.