Description Usage Arguments Details Value Author(s) References See Also Examples
The function KINBI defines the K-inflated  Negative Binomial distribution,
a three  parameter distribution, for a gamlss.family object to be used in GAMLSS fitting  using the function gamlss(). The functions dKINBI, pKINBI, qKINBI and rKINBI define thedensity, distribution function, quantile function and random generation for the K-inflated Negative Binomial,KINBI(), distribution.
1 2 3 4 5 6 7 8 9 10 11  |  KINBI(mu.link = "log", sigma.link = "log", nu.link = "logit", kinf="K")
dKINBI(x, mu = 1, sigma = 1, nu = 0.3, kinf=0 ,log = FALSE)
pKINBI(q, mu = 1, sigma = 1, nu = 0.3, kinf=0, lower.tail = TRUE,
    log.p = FALSE)
qKINBI(p, mu = 1, sigma = 1, nu = 0.3, kinf=0, lower.tail = TRUE,
    log.p = FALSE)
rKINBI(n, mu = 1, sigma = 1, nu = 0.3, kinf=0)
 | 
mu.link | 
  Defines the   | 
sigma.link | 
 Defines the    | 
nu.link | 
 Defines the   | 
x | 
 vector of (non-negative integer) quantiles  | 
mu | 
 vector of positive means  | 
sigma | 
 vector of positive despersion parameter  | 
nu | 
 vector of inflated point probability  | 
p | 
 vector of probabilities  | 
q | 
 vector of quantiles  | 
n | 
 number of random values to return  | 
kinf | 
 defines inflated point in generating K-inflated distribution  | 
log,log.p | 
 logical; if TRUE, probabilities p are given as log(p)  | 
lower.tail | 
 logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]  | 
The definition for the K-inflated Negative Binomial distribution.
The functions KINBI return a gamlss.family object which can be used to fit K-inflated Negative Binomial distribution in the gamlss() function.
Saeed Mohammadpour <s.mohammadpour1111@gamlil.com>, Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion),Appl. Statist.,54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R.Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or seehttp://www.gamlss.org/)
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017)Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Najafabadi, A. T. P. and MohammadPour, S. (2017). A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate-Making Systems. Asia-Pacific Journal of Risk and Insurance, 12.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59  | #--------------------------------------------------------------------------------
# gives information about the default links for the  Negative Binomial distribution
KINBI()
#--------------------------------------------------------------------------------
# generate zero inflated Negative Binomial distribution
gen.Kinf(family=NBI, kinf=0)
# generate random sample from zero inflated Negative Binomial distribution
x<-rinf0NBI(1000,mu=1, sigma=.5, nu=.2)
# fit the zero inflated Negative Binomial distribution using gamlss
data<-data.frame(x=x)
## Not run: 
gamlss(x~1, family=inf0NBI, data=data)
histDist(x, family=inf0NBI)
## End(Not run)
#--------------------------------------------------------------------------------
# generated one inflated Negative Binomial distribution
gen.Kinf(family=NBI, kinf=1)
# generate random sample from one inflated Negative Binomial distribution
x<-rinf1NBI(1000,mu=1, sigma=.5, nu=.2)
# fit the one inflated Negative Binomial distribution using gamlss
data<-data.frame(x=x)
## Not run: 
gamlss(x~1, family=inf1NBI, data=data)
histDist(x, family=inf1NBI)
## End(Not run)
#--------------------------------------------------------------------------------
mu=4; sigma=.5; nu=.2;
par(mgp=c(2,1,0),mar=c(4,4,4,1)+0.1)
#plot the pdf using plot
plot(function(x) dinf1NBI(x, mu=mu, sigma=sigma, nu=nu), from=0, to=20, n=20+1,
     type="h",xlab="x",ylab="f(x)",cex.lab=1.5)
#--------------------------------------------------------------------------------
#plot the cdf using plot
cdf <- stepfun(0:19, c(0,pinf1NBI(0:19, mu=mu, sigma=sigma, nu=nu)), f = 0)
plot(cdf, xlab="x", ylab="F(x)", verticals=FALSE,
     cex.points=.8, pch=16, main="",cex.lab=1.5)
#--------------------------------------------------------------------------------
#plot the qdf using plot
invcdf <- stepfun(seq(0.01,.99,length=19), qinf1NBI(seq(0.1,.99,length=20),mu,        sigma), f = 0)
plot(invcdf, ylab=expression(x[p]==F^{-1}(p)), do.points=FALSE,verticals=TRUE,
     cex.points=.8, pch=16, main="",cex.lab=1.5, xlab="p")
#--------------------------------------------------------------------------------
# generate random sample
Ni <- rinf1NBI(1000, mu=mu, sigma=sigma, nu=nu)
 hist(Ni,breaks=seq(min(Ni)-0.5,max(Ni)+0.5,by=1),col="lightgray", main="",cex.lab=2)
barplot(table(Ni))
#--------------------------------------------------------------------------------
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.