View source: R/LR-test-12-06-2013.R
| LR.test | R Documentation |
The function performs a likelihood ration test for two nested fitted model.
LR.test(null, alternative, print = TRUE)
null |
The null hypothesis (simpler) fitted model |
alternative |
The alternative hypothesis (more complex) fitted model |
print |
whether to print or save the result |
Warning: no checking whether the models are nested is performed.
If print=FALSE a list with
chi, df and p.val is produced.
Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
gamlss, stepGAIC
data(usair)
m0<-gamlss(y~x1+x2, data=usair)
m1<-gamlss(y~x1+x2+x3+x4, data=usair)
LR.test(m0,m1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.