GVN | R Documentation |
GVN
computes graph equivalent of the Von Neummann variance estimator.
GVN(y, A, L)
y |
Numeric vector that represents the noisy data. |
A |
Adjacency matrix of the graph. |
L |
Laplacian matrix of the graph. |
In many real-world scenarios, the noise level \sigma^2
remains generally unknown. Given any function g : \mathbb R_+ \rightarrow \mathbb R_+
, a straightforward computation gives:
\mathbf E[\widetilde f^T g(L) \widetilde f] = f^T g(L) f + \mathbf E[\xi^T g(L) \xi] = f^T g(L) f + \sigma^2 \mathrm{Tr}(g(L))
A biased estimator of the variance \sigma^2
can be given by:
\hat \sigma^2_1 = \frac{\widetilde f^T g(L) \widetilde f}{\mathrm{Tr}(g(L))}
Assuming the original graph signal is smooth enough that f^T g(L) f
is negligible compared to \mathrm{Tr}(g(L))
, \hat \sigma^2
provides a reasonably accurate estimate of \sigma^2
. For this function, a common choice is g(x) = x
. Thanks to Dirichlet's formula, it follows:
\hat \sigma^2_1 = \frac{\widetilde f^T L \widetilde f}{\mathrm{Tr}(L)} = \frac{\sum_{i,j \in V} w_{ij} |\widetilde f(i) - \widetilde f(j)|^2}{2 \mathrm{Tr}(L)}
This is the graph adaptation of the Von Neumann estimator, hence the term Graph Von Neumann estimator (GVN).
The Graph Von Neumann variance estimate for the given noisy data.
de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.
von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Statistics, 35(3), 433–451.
HPFVN
## Not run:
data(minnesota)
A <- minnesota$A
L <- laplacian_mat(A)
x <- minnesota$xy[ ,1]
n <- length(x)
f <- sin(x)
sigma <- 0.1
noise <- rnorm(n, sd = sigma)
y <- f + noise
sigma^2
GVN(y, A, L)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.