Nothing
test.regress <- function(network, likelihood, link, t1=NULL, t2=NULL) {
n.trt <- nrow(network$treatments)
devianceNames <- c("Dbar", "pD", "DIC", "data points", "dev.ab", "dev.re", "fit.ab", "fit.re", "lev.ab", "lev.re", "nd.ab", "nd.re", "fitted")
# consistency model, random effects
model <- mtc.model(network, likelihood=likelihood, link=link)
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
plot(result)
forest(result)
s <- summary(result)
expect_true("sd.d" %in% rownames(s$summaries$quantiles))
summary(relative.effect(result, t1=network$treatments$id[2]))
expect_equal(dim(rank.probability(result)), c(n.trt, n.trt))
expect_equal(names(result$deviance), devianceNames)
expect_true(!all(is.na(unlist(result$deviance[c("Dbar", "pD", "DIC")]))))
# consistency model, fixed effect
model <- mtc.model(network, likelihood=likelihood, link=link, linearModel="fixed")
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
plot(result)
forest(result)
s <- summary(result)
expect_false("sd.d" %in% rownames(s$summaries$quantiles))
summary(relative.effect(result, t1=network$treatments$id[2]))
expect_equal(dim(rank.probability(result)), c(n.trt, n.trt))
expect_equal(names(result$deviance), devianceNames)
expect_true(!all(is.na(unlist(result$deviance[c("Dbar", "pD", "DIC")]))))
if (!is.null(t1) && !is.null(t2)) {
# node-splitting, random effects
model <- mtc.model(network, likelihood=likelihood, link=link, type="nodesplit", t1=t1, t2=t2)
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
plot(result)
expect_error(forest(result))
s <- summary(result)
expect_true("sd.d" %in% rownames(s$summaries$quantiles))
expect_true("d.direct" %in% rownames(s$summaries$quantiles))
expect_true("d.indirect" %in% rownames(s$summaries$quantiles))
expect_error(relative.effect(result, t1="C"))
expect_error(rank.probability(result))
expect_equal(names(result$deviance), devianceNames)
expect_true(!all(is.na(unlist(result$deviance[c("Dbar", "pD", "DIC")]))))
# node-splitting, fixed effect
model <- mtc.model(network, likelihood=likelihood, link=link, type="nodesplit", t1=t2, t2=t1, linearModel="fixed")
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
plot(result)
s <- summary(result)
expect_false("sd.d" %in% rownames(s$summaries$quantiles))
expect_true("d.direct" %in% rownames(s$summaries$quantiles))
expect_true("d.indirect" %in% rownames(s$summaries$quantiles))
expect_equal(names(result$deviance), devianceNames)
expect_true(!all(is.na(unlist(result$deviance[c("Dbar", "pD", "DIC")]))))
}
# ume, random effects
suppressWarnings(model <- mtc.model(network, likelihood=likelihood, link=link, type="ume"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
plot(result)
s <- summary(result)
expect_equal(names(result$deviance), devianceNames)
expect_true(!all(is.na(unlist(result$deviance[c("Dbar", "pD", "DIC")]))))
# ume, fixed effect
suppressWarnings(model <- mtc.model(network, likelihood=likelihood, link=link, type="ume", linearModel="fixed"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
plot(result)
s <- summary(result)
expect_equal(names(result$deviance), devianceNames)
expect_true(!all(is.na(unlist(result$deviance[c("Dbar", "pD", "DIC")]))))
# anohe, random effects
capture.output(anohe <- mtc.anohe(network, likelihood=likelihood, link=link, n.adapt=100, n.iter=500))
capture.output(plot(anohe))
anohe.s <- summary(anohe)
plot(anohe.s)
capture.output(print(anohe.s))
expect_equal(names(result$deviance), devianceNames)
expect_true(!all(is.na(unlist(result$deviance[c("Dbar", "pD", "DIC")]))))
# anohe, fixed effect
capture.output(anohe <- mtc.anohe(network, likelihood=likelihood, link=link, linearModel="fixed", n.adapt=100, n.iter=500))
capture.output(plot(anohe))
anohe.s <- summary(anohe)
plot(anohe.s)
capture.output(print(anohe.s))
expect_equal(names(result$deviance), devianceNames)
expect_true(!all(is.na(unlist(result$deviance[c("Dbar", "pD", "DIC")]))))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.