Description Usage Arguments Details Value See Also Examples
Test the null hypothesis that Hardy-Weinberg equilibrium holds using the Chi-Square method.
1 2 3 4  | 
x | 
 genotype or haplotype object.  | 
simulate.p.value | 
 a logical value indicating whether the p-value
should be computed using simulation instead of using the
Chi-Square approximation. Defaults to   | 
B | 
 Number of simulation iterations to use when
  | 
... | 
  optional parameters passed to   | 
This function generates a 2-way table of allele counts, then calls
chisq.test to compute a p-value for Hardy-Weinberg
Equilibrium.  By default, it uses an unadjusted Chi-Square test
statistic and computes the p-value using a simulation/permutation
method.  When simulate.p.value=FALSE, it computes the test
statistic using the Yates continuity correction and tests it against
the asymptotic Chi-Square distribution with the approproate degrees of
freedom.
Note: The Yates continuty correction is applied *only* when
simulate.p.value=FALSE, so that the reported test statistics
when simulate.p.value=FALSE and simulate.p.value=TRUE
will differ.
An object of class htest.
HWE.exact,
HWE.test,
diseq,
diseq.ci,
allele,
chisq.test,
boot,
boot.ci
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  | example.data   <- c("D/D","D/I","D/D","I/I","D/D",
                    "D/D","D/D","D/D","I/I","")
g1  <- genotype(example.data)
g1
HWE.chisq(g1)
# compare with
HWE.exact(g1)
# and 
HWE.test(g1)
three.data   <- c(rep("A/A",8),
                  rep("C/A",20),
                  rep("C/T",20),
                  rep("C/C",10),
                  rep("T/T",3))
g3  <- genotype(three.data)
g3
HWE.chisq(g3, B=10000)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.