inv_powerlaw | R Documentation |
-[inv_powerlaw()]
Get parameters and values pertaining to the inverse power law model.
-[neg_exp()]
Get parameters and values pertaining to the negative exponential model.
inv_powerlaw(
params = load_parameters(),
betas = NULL,
mets = NULL,
we = NULL,
linkcutoff = NULL
)
neg_expo(
params = load_parameters(),
gammas = NULL,
mets = NULL,
we = NULL,
linkcutoff = NULL
)
params |
Object. This function uses the parameter values defined in |
betas |
Numeric. Beta is the dispersal parameter used in the inverse power law to estimate a species' dispersal gradient. Please refer to Mundt et al (2009) for details on how to calculate this parameter. Any beta values should be positive. Smaller beta values indicate a higher likelihood of dispersal between nodes. |
mets |
Character. There are seven network metrics supported by |
we |
Numeric. This parameter indicates the weight(s) of each specified network metric, representing the importance of the network metric in the analysis. Since these weights represent percentages, any weight(s) should be between 0 and 100, and the sum of all specified weights should be 100. |
linkcutoff |
Numeric. This parameter is only used to calculate |
gammas |
Numeric. Gamma is the dispersal parameter used in the negative exponential to estimate a species' dispersal gradient. Any gamma values should be positive. Smaller gamma values indicate a higher likelihood of dispersal between nodes. |
Refer to Esker et al (2007) for a discussion on the characteristics of each dispersal gradient or kernel model (i.e., inverse power law and negative exponential). The resulting object produced by load_parameters()
provides the following values used when running the analysis
-beta
is a dispersal parameter for calculating the inverse power law model.
-gamma
is a dispersal parameter for calculating the negative exponential model.
-metrics
Each network metric is applied to the adjacency matrix produced in the intermediate step.
-weights
The link weights that is used in the network analysis.
-cutoff
Currently used as a parameter to calculate centrality in the network - betweeness()
and closeness()
.
As defined in igraph::betweenness()
, it's the maximum length to consider when calculating centrality.
If zero or negative, then there is no such limit.
List with parameters and values. See details.
Esker PD, Sparks AH, Antony G, Bates M, Dall' Acqua W, Frank EE, Huebel L, Segovia V, Garrett KA (2007). “Ecology and Epidemiology in R: Modeling dispersal gradients.” The Plant Health Instructor. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1094/PHI-A-2008-0129-03")}
Mundt CC, Sackett KE, Wallace LD, Cowger C, Dudley JP (2009). “Aerial Dispersal and Multiple-Scale Spread of Epidemic Disease.” Ecohealth. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1007/s10393-009-0251-z")}
Csardi G, Nepusz T (2006). “The igraph software package for complex network research.” InterJournal, Complex Systems, 1695. https://igraph.org.
Csárdi G, Nepusz T, Traag V, Horvát Sz, Zanini F, Noom D, Müller K (2024). igraph: Network Analysis and Visualization in R. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.5281/zenodo.7682609")}, R package version 1.5.1, https://CRAN.R-project.org/package=igraph.
supported_metrics()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.