Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, echo = FALSE------------------------------------------------------
library(geomultistar)
## -----------------------------------------------------------------------------
ms <- multistar() |>
add_facts(
fact_name = "mrs_age",
fact_table = mrs_fact_age,
measures = "n_deaths",
nrow_agg = "count"
)
## -----------------------------------------------------------------------------
ms <- ms |>
add_facts(
fact_name = "mrs_cause",
fact_table = mrs_fact_cause,
measures = c("pneumonia_and_influenza_deaths", "other_deaths"),
nrow_agg = "nrow_agg"
)
## -----------------------------------------------------------------------------
ms <- ms |>
add_dimension(
dimension_name = "where",
dimension_table = mrs_where,
dimension_key = "where_pk",
fact_name = "mrs_age",
fact_key = "where_fk"
)
## -----------------------------------------------------------------------------
ms <- ms |>
add_dimension(
dimension_name = "when",
dimension_table = mrs_when,
dimension_key = "when_pk",
fact_name = "mrs_age",
fact_key = "when_fk",
key_as_data = TRUE
) |>
add_dimension(
dimension_name = "who",
dimension_table = mrs_who,
dimension_key = "who_pk",
fact_name = "mrs_age",
fact_key = "who_fk"
)
## -----------------------------------------------------------------------------
ms <- ms |>
relate_dimension(dimension_name = "where",
fact_name = "mrs_cause",
fact_key = "where_fk") |>
relate_dimension(dimension_name = "when",
fact_name = "mrs_cause",
fact_key = "when_fk")
## -----------------------------------------------------------------------------
dq <- dimensional_query(ms)
## -----------------------------------------------------------------------------
dq_1 <- dq |>
select_fact(
name = "mrs_age",
measures = "n_deaths",
agg_functions = "MAX"
)
## -----------------------------------------------------------------------------
dq_2 <- dq |>
select_fact(name = "mrs_age",
measures = "n_deaths")
## -----------------------------------------------------------------------------
dq_3 <- dq |>
select_fact(name = "mrs_age")
## -----------------------------------------------------------------------------
dq_4 <- dq |>
select_fact(name = "mrs_age",
measures = "n_deaths") |>
select_fact(name = "mrs_cause")
## -----------------------------------------------------------------------------
dq_1 <- dq |>
select_dimension(name = "where",
attributes = c("city", "state"))
## -----------------------------------------------------------------------------
dq_2 <- dq |>
select_dimension(name = "where")
## -----------------------------------------------------------------------------
dq <- dq |>
filter_dimension(name = "when", week <= "03") |>
filter_dimension(name = "where", city == "Bridgeport")
## -----------------------------------------------------------------------------
dq <- dimensional_query(ms) |>
select_dimension(name = "where",
attributes = c("division_name", "region_name")) |>
select_dimension(name = "when",
attributes = c("year", "week")) |>
select_fact(name = "mrs_age",
measures = "n_deaths") |>
filter_dimension(name = "when", week <= "03")
ms_2 <- dq |>
run_query()
class(ms_2)
## -----------------------------------------------------------------------------
ft <- ms_2 |>
multistar_as_flat_table()
## ----results = "asis", echo = FALSE-------------------------------------------
pander::pandoc.table(head(ft), split.table = Inf)
## -----------------------------------------------------------------------------
gms <-
geomultistar(ms, geodimension = "where")
## -----------------------------------------------------------------------------
gms <- gms |>
define_geoattribute(
attribute = "city",
from_layer = usa_cities,
by = c("city" = "city", "state" = "state")
)
## -----------------------------------------------------------------------------
empty_city <- gms |>
get_empty_geoinstances(attribute = "city")
## ----results = "asis", echo = FALSE-------------------------------------------
pander::pandoc.table(empty_city, split.table = Inf)
## -----------------------------------------------------------------------------
gms <- gms |>
define_geoattribute(
attribute = "county",
from_layer = usa_counties,
by = c("county" = "county", "state" = "state")
)
## -----------------------------------------------------------------------------
empty_county <- gms |>
get_empty_geoinstances(attribute = "county")
## ----results = "asis", echo = FALSE-------------------------------------------
pander::pandoc.table(empty_county, split.table = Inf)
## -----------------------------------------------------------------------------
gms <- gms |>
define_geoattribute(
attribute = c("state"),
from_layer = usa_states,
by = c("state" = "state")
)
## -----------------------------------------------------------------------------
gms <- gms |>
define_geoattribute(
attribute = "division",
from_attribute = "state"
)
## -----------------------------------------------------------------------------
gms <- gms |>
define_geoattribute(from_attribute = "state")
## -----------------------------------------------------------------------------
gdq <- dimensional_query(gms) |>
select_dimension(name = "where",
attributes = c("division_name", "region_name")) |>
select_dimension(name = "when",
attributes = c("year", "week")) |>
select_fact(name = "mrs_age",
measures = "n_deaths") |>
filter_dimension(name = "when", week <= "03")
gms_2 <- gdq |>
run_query()
class(gms_2)
## -----------------------------------------------------------------------------
vl_sf <- gdq |>
run_geoquery()
class(vl_sf)
## ----results = "asis", echo = FALSE-------------------------------------------
pander::pandoc.table(head(vl_sf), split.table = Inf)
## -----------------------------------------------------------------------------
plot(vl_sf[,"n_deaths"])
## -----------------------------------------------------------------------------
vl_sf_w <- gdq |>
run_geoquery(wider = TRUE)
## ----results = "asis", echo = FALSE-------------------------------------------
pander::pandoc.table(head(vl_sf_w$sf), split.table = Inf)
## ----results = "asis", echo = FALSE-------------------------------------------
pander::pandoc.table(head(vl_sf_w$variables), split.table = Inf)
## -----------------------------------------------------------------------------
filepath <- tempdir()
l <- save_as_geopackage(vl_sf_w, "division", filepath = filepath)
file <- paste0(filepath, "/division.gpkg")
sf::st_layers(file)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.