gettingtothebottom: Learning Optimization and Machine Learning for Statistics

Getting to the Bottom accompanies the "Getting to the Bottom" optimization methods series at It contains data and code to reproduce the examples in the articles.

Install the latest version of this package by entering the following in R:
AuthorJocelyn T. Chi <>
Date of publication2014-12-05 01:37:22
MaintainerJocelyn T. Chi <>
LicenseMIT + file LICENSE

View on CRAN

Man pages

baltimoreyouth: Baltimore Youth Indicators - 2010 and 2011

diff_norm: MM Algorithm - Normed Difference

engel: Engel's Law - Engel Food Expenditures Data from the quantreg...

example.alpha: Gradient Descent Algorithm - Plots Depicting Gradient Descent...

example.quadratic.approx: Gradient Descent Algorithm - Plots Depicting How Different...

gdescent: Gradient Descent Algorithm

generate_nnm: Generate random nonnegative mixture components

gettingtothebottom: gettingtothebottom

init.lambda: MM Algorithm - Initial lambda

makeLambdaseq: MM Algorithm - Function for making sequence of lambdas for...

makeOmega: MM Algorithm - Generate Omega

makeY: MM Algorithm - Make Y

makeZ: MM Algorithm - Make Z

matrixcomplete: MM Algorithm - Matrix Completion

moviebudgets: Movie ratings and budget database derived from data from...

movieratings: Movie ratings database derived from data from

nnls_mm: Nonnegative Least Squares via MM

nutrition: The Diet Problem: "Daily Allowances of Nutrients for a...

plot_gradient: Gradient Descent Algorithm - Plotting the Gradient Function

plot_iterates: Gradient Descent Algorithm - Plotting the Iterates

plot_loss: Gradient Descent Algorithm - Plotting the Loss Function

plot_nnm: MM Algorithm - Plot NNM

plot_nnm_coef: MM Algorithm - Plotting the NNMLS regression coefficients

plot_nnm_obj: MM Algorithm - Plot NNM Objective

plot_nnm_reconstruction: MM Algorithm - Plotting the Reconstruction

plot_nnm_truth: MM Algorithm - Plotting the True Signal

plot_softhreshold: MM Algorithm - Plot the Softhreshold Function

plot_solpaths_error: MM Algorithm - Function for plotting the imputed values...

plot_solutionpaths: MM Algorithm - Plot results of solutionpaths function

plot_spect: MM Algorithm - Plotting the Spectroscopic Signal

softhreshold: MM Algorithm - Softhreshold Function

solutionpaths: MM Algorithm - Find the best fit lambda for a given problem...

stigler: The Diet Problem: "Nutritive Values of Common Foods per...

testmatrix: MM Algorithm - Generate Test Matrix


baltimoreyouth Man page
diff_norm Man page
engel Man page
example.alpha Man page
example.quadratic.approx Man page
gdescent Man page
generate_nnm Man page
gettingtothebottom Man page
gettingtothebottom-package Man page
init.lambda Man page
makeLambdaseq Man page
makeOmega Man page
makeY Man page
makeZ Man page
matrixcomplete Man page
moviebudgets Man page
movieratings Man page
nnls_mm Man page
nutrition Man page
plot_gradient Man page
plot_iterates Man page
plot_loss Man page
plot_nnm Man page
plot_nnm_coef Man page
plot_nnm_obj Man page
plot_nnm_reconstruction Man page
plot_nnm_truth Man page
plot_softhreshold Man page
plot_solpaths_error Man page
plot_solutionpaths Man page
plot_spect Man page
softhreshold Man page
solutionpaths Man page
stigler Man page
testmatrix Man page

Questions? Problems? Suggestions? or email at

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.