Description Usage Arguments Author(s) Examples
solutionpaths
Function for finding the best fit lambda for a given problem based on an initial guess for lambda
1 2 | solutionpaths(A, X, Z, omega, lambda.start, tol = 1e-04,
liveupdates = FALSE, lambdaseq_length = 20)
|
A |
Original data matrix (no unobserved entries) |
X |
Data matrix (with unobserved entries) |
Z |
Initial model matrix |
omega |
Vector of unobserved entries in the data matrix X |
lambda.start |
Initial value for lambda |
tol |
(Optional) Tolerance for convergence (Default: 1e-4) |
liveupdates |
(Optional) Set to TRUE to view progress of comparisons. (Default: FALSE) |
lambdaseq_length |
(Optional) Length of lambda sequence for convergence. (Default: 20) |
Jocelyn T. Chi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | # Generate a test matrix
seed <- 12345
m <- 100
n <- 100
r <- 3
T <- testmatrix(m,n,r,seed=seed)
# Add some noise to the test matrix
E <- 0.1*matrix(rnorm(m*n),m,n)
A <- T + E
# Obtain a vector of unobserved entries
temp <- makeOmega(m,n,percent=0.5)
omega <- temp$omega
# Remove unobserved entries from test matrix
X <- A
X[omega] <- NA
# Make initial model matrix Z and find initial lambda
Z <- matrix(0,m,n)
lambda.start <- init.lambda(X,omega)
lambdaseq_length=20
tol <- 1e-2
ans <- solutionpaths(A,X,Z,omega,lambda.start,tol=tol,
liveupdates=TRUE,lambdaseq_length=lambdaseq_length)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.