Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(ggplot2)
library(ggprism)
library(patchwork)
library(magrittr)
## -----------------------------------------------------------------------------
str(sleep)
## ----fig.width=4, fig.height=3.5----------------------------------------------
# create a jitter plot of the sleep data set
# and indicate the means
p <- ggplot(sleep, aes(x = group, y = extra)) +
geom_jitter(aes(shape = group), width = 0.1) +
stat_summary(geom = "crossbar", fun = mean, colour = "red", width = 0.2) +
theme_prism() +
theme(legend.position = "none")
p
## -----------------------------------------------------------------------------
# perform a t-test and obtain the p-value
result <- t.test(extra ~ group, data = sleep)$p.value
result <- signif(result, digits = 3)
result
## -----------------------------------------------------------------------------
df_p_val <- data.frame(
group1 = "1",
group2 = "2",
label = result,
y.position = 6
)
## ----fig.height=3.5-----------------------------------------------------------
# add p-value brackets
p1 <- p + add_pvalue(df_p_val,
xmin = "group1",
xmax = "group2",
label = "label",
y.position = "y.position")
# change column names to something silly
colnames(df_p_val) <- c("apple", "banana", "some_label", "some_y_position")
# add p-value brackets again
p2 <- p + add_pvalue(df_p_val,
xmin = "apple",
xmax = "banana",
label = "some_label",
y.position = "some_y_position")
p1 + p2
## -----------------------------------------------------------------------------
# return column names back to default
colnames(df_p_val) <- c("group1", "group2", "label", "y.position")
## ----fig.width=7, fig.height=7------------------------------------------------
# change bracket and label aesthetics
p1 <- p + add_pvalue(df_p_val,
colour = "red", # label
label.size = 8, # label
fontface = "bold", # label
fontfamily = "serif", # label
angle = 45, # label
hjust = 1, # label
vjust = 2, # label
bracket.colour = "blue", # bracket
bracket.size = 1, # bracket
linetype = "dashed", # bracket
lineend = "round") # bracket
# use glue expression for label
p2 <- p + add_pvalue(df_p_val, label = "p = {label}")
# make bracket tips longer and use coord_flip
p3 <- p + add_pvalue(df_p_val, tip.length = 0.15, coord.flip = TRUE) +
coord_flip()
# change bracket tips independently
# (make one side disappear and the other longer)
p4 <- p + add_pvalue(df_p_val, tip.length = c(0.2, 0))
(p1 + p2) / (p3 + p4)
## ----fig.height=3.5-----------------------------------------------------------
# position label above "group1"
p1 <- p + add_pvalue(df_p_val, label = "p = {label}",
remove.bracket = TRUE, x = 1)
# position label between x = 1 and x = 2
p2 <- p + add_pvalue(df_p_val, label = "p = {label}",
remove.bracket = TRUE, x = 1.5)
p1 + p2
## -----------------------------------------------------------------------------
str(ToothGrowth)
## ----fig.width=4, fig.height=3.5----------------------------------------------
# create a box plot of the ToothGrowth data set
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(aes(fill = dose), colour = "black") +
theme_prism() +
theme(legend.position = "none")
p
## -----------------------------------------------------------------------------
# compare means again reference
result1 <- t.test(len ~ dose,
data = subset(ToothGrowth, dose %in% c(0.5, 1.0)))$p.value
result2 <- t.test(len ~ dose,
data = subset(ToothGrowth, dose %in% c(0.5, 2.0)))$p.value
# Benjamini-Hochberg correction for multiple testing
result <- p.adjust(c(result1, result2), method = "BH")
## -----------------------------------------------------------------------------
# don't need group2 column (i.e. xmax)
# instead just specify x position in the same way as y.position
df_p_val <- data.frame(
group1 = c(0.5, 0.5),
group2 = c(1, 2),
x = c(2, 3),
label = signif(result, digits = 3),
y.position = c(35, 35)
)
## ----fig.height=3.5-----------------------------------------------------------
p1 <- p + add_pvalue(df_p_val,
xmin = "group1",
x = "x",
label = "label",
y.position = "y.position")
p2 <- p + add_pvalue(df_p_val,
xmin = "group1",
x = "x",
label = "p = {label}",
y.position = "y.position",
label.size = 3.2,
fontface = "bold")
p1 + p2
## ----fig.height=3.5-----------------------------------------------------------
# plotmath expression to have superscript exponent
df_p_val$p.exprs <- paste0("P==1*x*10^", round(log10(df_p_val$label), 0))
# as above but with italics
df_p_val$p.exprs.ital <- lapply(
paste(round(log10(df_p_val$label), 0)),
function(x) bquote(italic("P = 1x10"^.(x)))
)
p1 <- p + add_pvalue(df_p_val,
xmin = "group1",
x = "x",
label = "p.exprs",
y.position = "y.position",
parse = TRUE)
p2 <- p + add_pvalue(df_p_val,
xmin = "group1",
x = "x",
label = "p.exprs.ital",
y.position = "y.position",
parse = TRUE)
p1 + p2
## ----fig.width=4, fig.height=3.5----------------------------------------------
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "0.5") %>%
rstatix::add_xy_position()
p + add_pvalue(df_p_val,
label = "p = {p.adj}",
remove.bracket = TRUE)
## ----fig.width=4, fig.height=3.5----------------------------------------------
df_p_val <- rstatix::t_test(ToothGrowth, len ~ supp) %>%
rstatix::add_x_position()
p <- ggplot(ToothGrowth, aes(x = factor(supp), y = len)) +
stat_summary(geom = "col", fun = mean) +
stat_summary(geom = "errorbar",
fun = mean,
fun.min = function(x) mean(x) - sd(x),
fun.max = function(x) mean(x) + sd(x),
width = 0.3) +
theme_prism() +
coord_cartesian(ylim = c(0, 35)) +
scale_y_continuous(breaks = seq(0, 35, 5), expand = c(0, 0))
# normal plot
p + add_pvalue(df_p_val, y.position = 30)
## ----fig.height=3.5-----------------------------------------------------------
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "0.5") %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
stat_summary(geom = "col", fun = mean) +
stat_summary(geom = "errorbar",
fun = mean,
fun.min = function(x) mean(x) - sd(x),
fun.max = function(x) mean(x) + sd(x),
width = 0.3) +
theme_prism() +
coord_cartesian(ylim = c(0, 40)) +
scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0))
# with brackets
p1 <- p + add_pvalue(df_p_val, label = "p.adj.signif")
# without brackets
p2 <- p + add_pvalue(df_p_val, label = "p.adj.signif", remove.bracket = TRUE)
p1 + p2
## ----fig.width=4, fig.height=3.5----------------------------------------------
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "all")
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
stat_summary(geom = "col", fun = mean) +
stat_summary(geom = "errorbar",
fun = mean,
fun.min = function(x) mean(x) - sd(x),
fun.max = function(x) mean(x) + sd(x),
width = 0.3) +
theme_prism() +
coord_cartesian(ylim = c(0, 40)) +
scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0))
p + add_pvalue(df_p_val,
label = "p.adj.signif",
y.position = 35)
## ----fig.width=4, fig.height=3.5----------------------------------------------
df_p_val <- ToothGrowth %>%
rstatix::group_by(factor(dose)) %>%
rstatix::t_test(len ~ 1, mu = 26) %>%
rstatix::adjust_pvalue(p.col = "p", method = "holm") %>%
rstatix::add_significance(p.col = "p.adj")
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
stat_summary(geom = "col", fun = mean) +
stat_summary(geom = "errorbar",
fun = mean,
fun.min = function(x) mean(x) - sd(x),
fun.max = function(x) mean(x) + sd(x),
width = 0.3) +
theme_prism() +
coord_cartesian(ylim = c(0, 40)) +
scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0))
# remember xmin and x are referring to the column dames in df_p_val
p + add_pvalue(df_p_val,
xmin = "group1",
x = "factor(dose)",
y = 37,
label = "p.adj.signif")
## ----fig.width=4, fig.height=3.5----------------------------------------------
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose)
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_violin(trim = FALSE) +
geom_boxplot(width = 0.2) +
theme_prism() +
coord_cartesian(ylim = c(0, 45)) +
scale_y_continuous(breaks = seq(0, 45, 5), expand = c(0, 0))
p + add_pvalue(df_p_val,
y.position = c(44, 41, 44),
bracket.shorten = c(0.025, 0, 0.025))
## ----fig.width=5, fig.height=3.5----------------------------------------------
df_p_val <- ToothGrowth %>%
rstatix::group_by(supp) %>%
rstatix::t_test(len ~ dose) %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(aes(fill = supp)) +
theme_prism()
# remember colour and step.group.by are referring to a column name in df_p_val
p + add_pvalue(df_p_val,
label = "p = {p.adj}",
colour = "supp",
fontface = "bold",
step.group.by = "supp",
step.increase = 0.1,
tip.length = 0,
bracket.colour = "black",
show.legend = FALSE)
## ----fig.width=5, fig.height=3.5----------------------------------------------
df_p_val <- ToothGrowth %>%
rstatix::group_by(dose) %>%
rstatix::t_test(len ~ supp) %>%
rstatix::adjust_pvalue(p.col = "p", method = "bonferroni") %>%
rstatix::add_significance(p.col = "p.adj") %>%
rstatix::add_xy_position(x = "dose", dodge = 0.8) # important for positioning!
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(aes(fill = supp)) +
theme_prism() +
coord_cartesian(ylim = c(0, 40))
p + add_pvalue(df_p_val,
xmin = "xmin",
xmax = "xmax",
label = "p = {p.adj}",
tip.length = 0)
## ----fig.width=5, fig.height=4------------------------------------------------
df_p_val1 <- ToothGrowth %>%
rstatix::group_by(dose) %>%
rstatix::t_test(len ~ supp) %>%
rstatix::adjust_pvalue(p.col = "p", method = "bonferroni") %>%
rstatix::add_significance(p.col = "p.adj") %>%
rstatix::add_xy_position(x = "dose", dodge = 0.8) # important for positioning!
df_p_val2 <- rstatix::t_test(ToothGrowth, len ~ dose,
p.adjust.method = "bonferroni") %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(aes(fill = supp)) +
theme_prism() +
coord_cartesian(ylim = c(0, 45))
p + add_pvalue(df_p_val1,
xmin = "xmin",
xmax = "xmax",
label = "p = {p.adj}",
tip.length = 0) +
add_pvalue(df_p_val2,
label = "p = {p.adj}",
tip.length = 0.01,
bracket.nudge.y = 2,
step.increase = 0.015)
## ----fig.height=3.5-----------------------------------------------------------
df_p_val <- ToothGrowth %>%
rstatix::group_by(dose) %>%
rstatix::t_test(len ~ supp) %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(supp), y = len)) +
geom_boxplot(width = 0.2) +
facet_wrap(
~ dose, scales = "free",
labeller = labeller(dose = function(x) paste("dose =", x))
) +
theme_prism()
p + add_pvalue(df_p_val)
## ----fig.height=3.5-----------------------------------------------------------
df_p_val <- ToothGrowth %>%
rstatix::group_by(supp) %>%
rstatix::t_test(len ~ dose) %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(width = 0.4) +
facet_wrap(~ supp, scales = "free") +
theme_prism()
p + add_pvalue(df_p_val)
## ----fig.height=7-------------------------------------------------------------
# add a grouping variable to ToothGrowth
tg <- ToothGrowth
tg$dose <- factor(tg$dose)
tg$grp <- factor(rep(c("grp1", "grp2"), 30))
# construct the p-value table by hand
df_p_val <- data.frame(
group1 = c("OJ", "OJ"),
group2 = c("VC", "VC"),
p.adj = c(0.0449, 0.00265),
y.position = c(22, 27),
grp = c("grp1", "grp2"),
dose = c("0.5", "1")
)
p <- ggplot(tg, aes(x = factor(supp), y = len)) +
geom_boxplot(width = 0.4) +
facet_wrap(grp ~ dose, scales = "free") +
theme_prism()
p + add_pvalue(df_p_val, bracket.nudge.y = 3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.