ggpiestats | R Documentation |
Pie charts for categorical data with statistical details included in the plot as a subtitle.
ggpiestats(
data,
x,
y = NULL,
counts = NULL,
type = "parametric",
paired = FALSE,
results.subtitle = TRUE,
label = "percentage",
label.args = list(direction = "both"),
label.repel = FALSE,
digits = 2L,
proportion.test = results.subtitle,
digits.perc = 0L,
bf.message = TRUE,
ratio = NULL,
conf.level = 0.95,
sampling.plan = "indepMulti",
fixed.margin = "rows",
prior.concentration = 1,
title = NULL,
subtitle = NULL,
caption = NULL,
legend.title = NULL,
ggtheme = ggstatsplot::theme_ggstatsplot(),
package = "RColorBrewer",
palette = "Dark2",
ggplot.component = NULL,
...
)
data |
A data frame (or a tibble) from which variables specified are to
be taken. Other data types (e.g., matrix,table, array, etc.) will not
be accepted. Additionally, grouped data frames from |
x |
The variable to use as the rows in the contingency table. Please note that if there are empty factor levels in your variable, they will be dropped. |
y |
The variable to use as the columns in the contingency table.
Please note that if there are empty factor levels in your variable, they
will be dropped. Default is |
counts |
The variable in data containing counts, or |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
paired |
Logical indicating whether data came from a within-subjects or
repeated measures design study (Default: |
results.subtitle |
Decides whether the results of statistical tests are
to be displayed as a subtitle (Default: |
label |
Character decides what information needs to be displayed
on the label in each pie slice. Possible options are |
label.args |
Additional aesthetic arguments that will be passed to
|
label.repel |
Whether labels should be repelled using |
digits |
Number of digits for rounding or significant figures. May also
be |
proportion.test |
Decides whether proportion test for |
digits.perc |
Numeric that decides number of decimal places for percentage
labels (Default: |
bf.message |
Logical that decides whether to display Bayes Factor in
favor of the null hypothesis. This argument is relevant only for
parametric test (Default: |
ratio |
A vector of proportions: the expected proportions for the
proportion test (should sum to |
conf.level |
Scalar between |
sampling.plan |
Character describing the sampling plan. Possible options
are |
fixed.margin |
For the independent multinomial sampling plan, which
margin is fixed ( |
prior.concentration |
Specifies the prior concentration parameter, set
to |
title |
The text for the plot title. |
subtitle |
The text for the plot subtitle. Will work only if
|
caption |
The text for the plot caption. This argument is relevant only
if |
legend.title |
Title text for the legend. |
ggtheme |
A |
package , palette |
Name of the package from which the given palette is to
be extracted. The available palettes and packages can be checked by running
|
ggplot.component |
A |
... |
Currently ignored. |
For details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html
graphical element | geom used | argument for further modification |
pie slices | ggplot2::geom_col() | NA |
labels | ggplot2::geom_label() /ggrepel::geom_label_repel() | label.args |
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing
Type | Design | Test | Function used |
Parametric/Non-parametric | Unpaired | Pearson's chi-squared test | stats::chisq.test() |
Bayesian | Unpaired | Bayesian Pearson's chi-squared test | BayesFactor::contingencyTableBF() |
Parametric/Non-parametric | Paired | McNemar's chi-squared test | stats::mcnemar.test() |
Bayesian | Paired | No | No |
Effect size estimation
Type | Design | Effect size | CI available? | Function used |
Parametric/Non-parametric | Unpaired | Cramer's V | Yes | effectsize::cramers_v() |
Bayesian | Unpaired | Cramer's V | Yes | effectsize::cramers_v() |
Parametric/Non-parametric | Paired | Cohen's g | Yes | effectsize::cohens_g() |
Bayesian | Paired | No | No | No |
Hypothesis testing
Type | Test | Function used |
Parametric/Non-parametric | Goodness of fit chi-squared test | stats::chisq.test() |
Bayesian | Bayesian Goodness of fit chi-squared test | (custom) |
Effect size estimation
Type | Effect size | CI available? | Function used |
Parametric/Non-parametric | Pearson's C | Yes | effectsize::pearsons_c() |
Bayesian | No | No | No |
grouped_ggpiestats
, ggbarstats
,
grouped_ggbarstats
# for reproducibility
set.seed(123)
# one sample goodness of fit proportion test
p <- ggpiestats(mtcars, vs)
# looking at the plot
p
# extracting details from statistical tests
extract_stats(p)
# association test (or contingency table analysis)
ggpiestats(mtcars, vs, cyl)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.