Nothing
## ----echo = FALSE-------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE,
message = FALSE,
fig.width = 7,
fig.height = 4
)
## ----setup, echo = FALSE------------------------------------------------------
library(ggplot2)
library(dplyr)
library(tidyr)
library(ggsurveillance)
## ----echo=FALSE---------------------------------------------------------------
influenza_germany |>
filter(AgeGroup == "00+") |>
align_dates_seasonal(
dates_from = ReportingWeek,
date_resolution = "isoweek",
start = 28
) -> df_flu_aligned
ggplot(df_flu_aligned, aes(x = date_aligned, y = Incidence)) +
stat_summary(
aes(linetype = "Historical Median (Min-Max)"),
data = . %>% filter(!current_season),
fun.data = median_hilow, geom = "ribbon", alpha = 0.3
) +
stat_summary(
aes(linetype = "Historical Median (Min-Max)"),
data = . %>% filter(!current_season),
fun = median, geom = "line"
) +
geom_line(
aes(linetype = "2024/25"),
data = . %>% filter(current_season), colour = "dodgerblue4", linewidth = 2
) +
labs(linetype = NULL) +
scale_x_date(date_labels = "%b'%y") +
theme_bw() +
theme(legend.position = c(0.2, 0.8))
## -----------------------------------------------------------------------------
library(ggplot2)
influenza_germany |>
align_dates_seasonal(
dates_from = ReportingWeek, date_resolution = "isoweek", start = 28
) -> df_flu_aligned
ggplot(df_flu_aligned, aes(x = date_aligned, y = Incidence, color = season)) +
geom_line() +
facet_wrap(~AgeGroup) +
theme_bw() +
theme_mod_rotate_x_axis_labels_45()
## -----------------------------------------------------------------------------
influenza_germany |>
align_dates_seasonal(dates_from = ReportingWeek) |>
group_by(AgeGroup, season) |>
tally(wt = Cases) |>
pivot_wider(names_from = AgeGroup, values_from = n)
## -----------------------------------------------------------------------------
influenza_germany |>
filter(AgeGroup == "00+") |>
align_dates_seasonal(
dates_from = ReportingWeek,
date_resolution = "isoweek",
start = 28
) -> df_flu_aligned
ggplot(df_flu_aligned, aes(x = date_aligned, y = Incidence)) +
stat_summary(
aes(linetype = "Historical Median (Min-Max)"),
data = . %>% filter(!current_season),
fun.data = median_hilow, geom = "ribbon", alpha = 0.3
) +
stat_summary(
aes(linetype = "Historical Median (Min-Max)"),
data = . %>% filter(!current_season),
fun = median, geom = "line"
) +
geom_line(
aes(linetype = "2024/25"),
data = . %>% filter(current_season), colour = "dodgerblue4", linewidth = 2
) +
labs(linetype = "") +
scale_x_date(date_labels = "%b'%y") +
theme_bw() +
theme(legend.position = c(0.2, 0.8))
## -----------------------------------------------------------------------------
influenza_germany |>
filter(AgeGroup != "00+") |>
align_dates_seasonal(dates_from = ReportingWeek) |>
ggplot(aes(x = ReportingWeek, weight = Cases, fill = season)) +
geom_vline_year(color = "grey50") +
# Use stat = count for more efficient plotting
geom_epicurve(color = NA, stat = "count") +
scale_y_cases_5er() +
theme_bw()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.