Nothing
#' Create a Gradient Field Layer in ggplot2
#'
#' These functions provide convenient ggplot2 layers for drawing gradient fields
#' by computing the gradient of a scalar field. A user-defined function (`fun`)
#' specifies the behavior of the scalar field by taking a numeric vector of
#' length 2 (representing \eqn{(x, y)}) and returning a single numeric value.
#' The underlying [StatStreamField] computes the gradient via numerical
#' differentiation (using \code{numDeriv::grad()}) and [GeomStream] renders the
#' resulting vectors.
#'
#' Two variants are provided:
#'
#' - **geom_gradient_field()** uses a default mapping that sets `color = after_stat(norm)`.
#' - **geom_gradient_field2()** uses a default mapping that sets `length = after_stat(norm)`
#' (with `color` unmapped by default).
#'
#' @inheritParams geom_vector
#' @inheritParams geom_stream_field
#'
#' @param mapping A set of aesthetic mappings created by \code{ggplot2::aes()}.
#' Additional aesthetics such as `color`, `size`, `linetype`, and `alpha` can
#' be defined. In
#' **geom_gradient_field** the default mapping includes `color = after_stat(norm)`,
#' whereas in **geom_gradient_field2** the default mapping includes `length =
#' after_stat(norm)`.
#' @param data A data frame containing the input data.
#' @param stat The statistical transformation to use on the data for this layer.
#' Defaults to [StatStreamField].
#' @param position Position adjustment, either as a string or the result of a
#' position adjustment function.
#' @param na.rm Logical. If `FALSE` (the default), missing values are removed
#' with a warning.
#' @param show.legend Logical. Should this layer be included in the legends?
#' @param inherit.aes Logical. If `FALSE`, overrides the default aesthetics
#' rather than combining with them.
#' @param fun A function that defines the scalar field. It should take a numeric
#' vector of length 2 (representing \eqn{(x, y)}) and return a single numeric
#' value. **(Required)**
#' @param xlim Numeric vector of length two. Specifies the limits of the x-axis
#' domain. Defaults to `c(-1, 1)`.
#' @param ylim Numeric vector of length two. Specifies the limits of the y-axis
#' domain. Defaults to `c(-1, 1)`.
#' @param n Integer. Grid resolution specifying the number of seed points along
#' each axis. Higher values produce a denser gradient field. Defaults to `11`.
#' @param center Logical. If `TRUE`, centers the seed points so that the
#' original (x, y) becomes the midpoint.
#' @param normalize Logical. If `TRUE`, gradient vectors are normalized based on
#' grid spacing. Defaults to `TRUE`.
#' @param tail_point Logical. If `TRUE`, a point is drawn at the tail of each
#' gradient vector.
#' @param eval_point Logical. If `TRUE`, a point is drawn at the evaluation
#' point where the gradient was computed. Defaults to `FALSE`.
#' @param grid A data frame containing precomputed grid points for seed
#' placement. If `NULL` (default), a regular Cartesian grid is generated based
#' on `xlim`, `ylim`, and `n`.
#' @param arrow A \code{grid::arrow()} specification to add arrowheads to the
#' gradient vectors. In **geom_gradient_field**, the default is a closed arrow
#' with a 30° angle and length `0.02` npc; in `geom_gradient_field2()`, the
#' default is `NULL`.
#' @param max_it Integer. Maximum number of integration steps allowed when
#' computing the gradient stream. Defaults to `1000`.
#' @param T Numeric. Time increment used for numerical integration when
#' `normalize` is FALSE. If not provided, it is computed automatically based
#' on grid spacing and the vector field’s magnitude.
#' @param L Numeric. Target length for the gradient vectors or streamlines. When
#' `normalize` is TRUE, computed vectors are scaled to have length L. If not
#' provided, L is computed automatically from the grid spacing.
#' @param type Character. Specifies the type of field to compute: use `"stream"`
#' to generate integrated streamlines or `"vector"` for individual vector
#' segments. Defaults to `"stream"`.
#' @param lineend Line end style (round, butt, square).
#' @param linejoin Line join style (round, mitre, bevel).
#' @param linemitre Line mitre limit (number greater than 1).
#' @param ... Other arguments passed on to \code{grid::layer()}.
#'
#' @section Aesthetics: `geom_gradient_field()` and `geom_gradient_field2()`
#' understand the following aesthetics (required aesthetics are in **bold**):
#'
#' - **`x`**: The x-coordinate of the seed point.
#' - **`y`**: The y-coordinate of the seed point.
#' - **`color`**: In **geom_gradient_field**, the color of the gradient vector.
#' In **geom_gradient_field2**, color is not mapped by default.
#' - **`length`**: In **geom_gradient_field2**, the computed vector norm.
#' - `size`, `linetype`, `alpha`: Additional aesthetics to control appearance.
#'
#' @return A ggplot2 layer that computes and plots a gradient field by
#' numerically differentiating a scalar field.
#'
#' @section Computed Variables:
#'
#' The following variables are computed internally by [StatStreamField] when
#' generating the gradient field from a scalar function:
#'
#' \describe{
#' \item{norm}{The Euclidean norm of the gradient vector, calculated as
#' \eqn{\sqrt{fx^2 + fy^2}}. This value is used, by default, for mapping color or scaling
#' arrow lengths in the visualization.}
#'
#' \item{avg_spd}{This variable may represent an average speed computed
#' from the gradient magnitude. In the default mapping for **geom_gradient_field**, the
#' color aesthetic is mapped to \code{after_stat(avg_spd)}.}
#' }
#'
#' @examples
#' Si <- matrix(c(1, 0.75, 0.75, 1), nrow = 2)
#' f <- function(u) exp(-as.numeric(u %*% solve(Si) %*% u) / 2) / (2 * pi * det(Si))
#'
#' ggplot() +
#' geom_gradient_field(fun = f, xlim = c(-3, 3), ylim = c(-3, 3))
#'
#' \donttest{
#' df <- expand.grid(x = seq(-3, 3, 0.1), y = seq(-3, 3, 0.1)) |>
#' transform(fxy = apply(cbind(x, y), 1, f))
#'
#' ggplot() +
#' geom_raster(aes(x, y, fill = fxy), data = df) +
#' geom_gradient_field(fun = f, xlim = c(-3, 3), ylim = c(-3, 3)) +
#' coord_equal()
#'
#' fxy <- function(x, y) apply(cbind(x,y), 1, f)
#'
#' ggplot() +
#' ggdensity::geom_hdr_fun(fun = fxy, xlim = c(-3,3), ylim = c(-3,3)) +
#' geom_gradient_field(fun = f, xlim = c(-3,3), ylim = c(-3,3)) +
#' coord_equal()
#'
#' library("ggdensity")
#' fxy <- function(x, y) apply(cbind(x, y), 1, f)
#' fxy(1, 2)
#' f(1:2)
#'
#' ggplot() +
#' geom_hdr_fun(fun = fxy, xlim = c(-3, 3), ylim = c(-3, 3)) +
#' geom_gradient_field(fun = f, xlim = c(-3, 3), ylim = c(-3, 3)) +
#' coord_equal()
#' }
#' @aliases geom_gradient_field stat_gradient_field geom_gradient_field2
#' stat_gradient_field2
#' @name geom_gradient_field
#' @export
NULL
#' @rdname geom_gradient_field
#' @export
geom_gradient_field <- function(
mapping = NULL,
data = NULL,
stat = StatStreamField,
position = "identity",
...,
na.rm = FALSE,
show.legend = TRUE,
inherit.aes = TRUE,
fun,
xlim = NULL,
ylim = NULL,
n = 11,
max_it = 1000,
T = NULL,
L = NULL,
center = TRUE,
type = "vector",
normalize = TRUE,
tail_point = FALSE,
eval_point = FALSE,
grid = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = grid::arrow(angle = 30, length = grid::unit(0.02, "npc"), type = "closed")
) {
if (is.null(data)) data <- ensure_nonempty_data(data)
n <- ensure_length_two(n)
if (type == "stream") {
default_mapping <- aes(color = after_stat(avg_spd))
} else if (type == "vector") {
default_mapping <- aes(color = after_stat(norm))
} else {
cli::cli_abort("`type` must be either 'stream' or 'vector', not {.val {type}}")
}
user_fixed_color <- any(c("color", "colour") %in% names(list(...)))
if (!user_fixed_color) {
default_mapping <- aes(color = after_stat(norm))
} else {
default_mapping <- aes()
}
if (missing(fun) || !is.function(fun)) {
stop("Please provide a valid scalar function `fun` that takes a numeric vector and returns a single numeric value.")
}
# if (is.null(xlim) && !is.null(data) && "x" %in% names(data)) {
# xlim <- range(data$x, na.rm = TRUE)
# } else if (is.null(xlim)) {
# xlim <- c(-10, 10) # Fallback default range
# }
#
# if (is.null(ylim) && !is.null(data) && "y" %in% names(data)) {
# ylim <- range(data$y, na.rm = TRUE)
# } else if (is.null(ylim)) {
# ylim <- c(-10, 10) # Fallback default range
# }
gradient_fun <- function(u) {
if (!is.numeric(u) || length(u) != 2) {
stop("Input to the gradient function must be a numeric vector of length 2.")
}
numDeriv::grad(func = fun, x = u)
}
layer(
stat = stat,
geom = GeomStream,
data = data,
mapping = mapping,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
fun = gradient_fun,
xlim = xlim,
ylim = ylim,
n = n,
na.rm = na.rm,
max_it = max_it,
T = T,
L = L,
center = center,
type = type,
normalize = normalize,
tail_point = tail_point,
eval_point = eval_point,
grid = grid,
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre,
arrow = arrow,
...
)
)
}
#' @rdname geom_gradient_field
#' @export
stat_gradient_field <- function(
mapping = NULL,
data = NULL,
geom = GeomStream,
position = "identity",
...,
na.rm = FALSE,
show.legend = TRUE,
inherit.aes = TRUE,
fun,
xlim = NULL,
ylim = NULL,
n = 11,
max_it = 1000,
T = NULL,
L = NULL,
center = TRUE,
type = "vector",
normalize = TRUE,
tail_point = FALSE,
eval_point = FALSE,
grid = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = grid::arrow(angle = 30, length = grid::unit(0.02, "npc"), type = "closed")
) {
if (is.null(data)) data <- ensure_nonempty_data(data)
n <- ensure_length_two(n)
if (type == "stream") {
default_mapping <- aes(color = after_stat(avg_spd))
} else if (type == "vector") {
default_mapping <- aes(color = after_stat(norm))
} else {
cli::cli_abort("`type` must be either 'stream' or 'vector', not {.val {type}}")
}
user_fixed_color <- any(c("color", "colour") %in% names(list(...)))
if (!user_fixed_color) {
default_mapping <- aes(color = after_stat(norm))
} else {
default_mapping <- aes()
}
if (missing(fun) || !is.function(fun)) {
stop("Please provide a valid scalar function `fun` that takes a numeric vector and returns a single numeric value.")
}
gradient_fun <- function(u) {
if (!is.numeric(u) || length(u) != 2) {
stop("Input to the gradient function must be a numeric vector of length 2.")
}
numDeriv::grad(func = fun, x = u)
}
layer(
stat = StatStreamField,
geom = geom,
data = data,
mapping = mapping,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
fun = gradient_fun,
xlim = xlim,
ylim = ylim,
n = n,
na.rm = na.rm,
max_it = max_it,
T = T,
L = L,
center = center,
type = type,
normalize = normalize,
tail_point = tail_point,
eval_point = eval_point,
grid = grid,
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre,
arrow = arrow,
...
)
)
}
#' @rdname geom_gradient_field
#' @export
geom_gradient_field2 <- function(
mapping = NULL,
data = NULL,
stat = StatStreamField,
position = "identity",
...,
na.rm = FALSE,
show.legend = TRUE,
inherit.aes = TRUE,
fun,
xlim = NULL,
ylim = NULL,
n = 11,
max_it = 1000,
T = NULL,
L = NULL,
center = FALSE,
type = "stream",
normalize = TRUE,
tail_point = TRUE,
eval_point = FALSE,
grid = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL
) {
if (is.null(data)) data <- ensure_nonempty_data(data)
n <- ensure_length_two(n)
default_mapping <- aes(length = after_stat(norm))
user_fixed_color <- any(c("color", "colour") %in% names(list(...)))
if (!user_fixed_color) {
default_mapping <- aes(color = after_stat(norm))
} else {
default_mapping <- aes()
}
if (missing(fun) || !is.function(fun)) {
stop("Please provide a valid scalar function `fun` that takes a numeric vector and returns a single numeric value.")
}
gradient_fun <- function(v) {
if (!is.numeric(v) || length(v) != 2) {
stop("Input to the gradient function must be a numeric vector of length 2.")
}
numDeriv::grad(func = fun, x = v)
}
layer(
stat = stat,
geom = GeomStream,
data = data,
mapping = mapping,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
fun = gradient_fun,
xlim = xlim,
ylim = ylim,
n = n,
na.rm = na.rm,
max_it = max_it,
T = T,
L = L,
center = center,
type = type,
normalize = normalize,
tail_point = tail_point,
eval_point = eval_point,
grid = grid,
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre,
arrow = arrow,
...
)
)
}
#' @rdname geom_gradient_field
#' @export
stat_gradient_field2 <- function(
mapping = NULL,
data = NULL,
geom = GeomStream,
position = "identity",
...,
na.rm = FALSE,
show.legend = TRUE,
inherit.aes = TRUE,
fun,
xlim = NULL,
ylim = NULL,
n = 11,
max_it = 1000,
T = NULL,
L = NULL,
center = FALSE,
type = "stream",
normalize = TRUE,
tail_point = TRUE,
eval_point = FALSE,
grid = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL
) {
if (is.null(data)) data <- ensure_nonempty_data(data)
n <- ensure_length_two(n)
default_mapping <- aes(length = after_stat(norm))
user_fixed_color <- any(c("color", "colour") %in% names(list(...)))
if (!user_fixed_color) {
default_mapping <- aes(color = after_stat(norm))
} else {
default_mapping <- aes()
}
if (missing(fun) || !is.function(fun)) {
stop("Please provide a valid scalar function `fun` that takes a numeric vector and returns a single numeric value.")
}
gradient_fun <- function(v) {
if (!is.numeric(v) || length(v) != 2) {
stop("Input to the gradient function must be a numeric vector of length 2.")
}
numDeriv::grad(func = fun, x = v)
}
layer(
stat = StatStreamField,
geom = geom,
data = data,
mapping = mapping,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
fun = gradient_fun,
xlim = xlim,
ylim = ylim,
n = n,
na.rm = na.rm,
max_it = max_it,
T = T,
L = L,
center = center,
type = type,
normalize = normalize,
tail_point = tail_point,
eval_point = eval_point,
grid = grid,
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre,
arrow = arrow,
...
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.