| mean-vcov-skew-kurt-methods | R Documentation | 
The function mean returns the expected value. The function
vcov returns the variance in the univariate case and the
variance-covariance matrix in the multivariate case. The functions
ghyp.skewness and ghyp.kurtosis only work for univariate
generalized hyperbolic distributions.
## S4 method for signature 'ghyp'
mean(x)
## S4 method for signature 'ghyp'
vcov(object)
ghyp.skewness(object)
ghyp.kurtosis(object)
| x,object | An object inheriting from class
 | 
The functions ghyp.skewness and ghyp.kurtosis are based
on the function ghyp.moment. Numerical integration will
be used in case a Student.t or variance gamma distribution is
submitted.
Either the expected value, variance, skewness or kurtosis.
David Luethi
ghyp, ghyp-class, Egig to
compute the expected value and the variance of the generalized inverse gaussian
mixing distribution distributed and its special cases.
  ## Univariate: Parametric
  vg.dist <- VG(lambda = 1.1, mu = 10, sigma = 10, gamma = 2)
  mean(vg.dist)
  vcov(vg.dist)
  ghyp.skewness(vg.dist)
  ghyp.kurtosis(vg.dist)
  ## Univariate: Empirical
  vg.sim <- rghyp(10000, vg.dist)
  mean(vg.sim)
  var(vg.sim)
  ## Multivariate: Parametric
  vg.dist <- VG(lambda = 0.1, mu = c(55, 33), sigma = diag(c(22, 888)), gamma = 1:2)
  mean(vg.dist)
  vcov(vg.dist)
  ## Multivariate: Empirical
  vg.sim <- rghyp(50000, vg.dist)
  colMeans(vg.sim)
  var(vg.sim)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.