Nothing
# ==============================================================================
# Global Setup for this file
# ==============================================================================
# We use the standard Iris dataset for testing
data(iris)
# Split into Matrix (X) and Grouping Factor (Y) for testing matrix interfaces
X <- as.matrix(iris[, 1:4])
Y <- iris$Species
# ==============================================================================
# 1. Testing Model Fitting Interfaces (S3 Dispatch)
# ==============================================================================
test_that("gipslda formula interface works correctly", {
# Action
fit_formula <- gipslda(Species ~ ., data = iris)
# Check class and type
expect_s3_class(fit_formula, "gipslda")
expect_type(fit_formula, "list")
# Check key components
required_components <- c("prior", "means", "scaling", "counts")
expect_true(all(required_components %in% names(fit_formula)))
# Check dimensions (3 classes x 4 variables)
expect_equal(dim(fit_formula$means), c(3, 4))
})
test_that("gipslda matrix interface works and matches formula", {
# Setup formula fit again for comparison
fit_formula <- gipslda(Species ~ ., data = iris)
# Action
fit_matrix <- gipslda(x = X, grouping = Y)
expect_s3_class(fit_matrix, "gipslda")
# Consistency check: priors and counts should be identical
expect_equal(fit_matrix$prior, fit_formula$prior)
expect_equal(fit_matrix$counts, fit_formula$counts)
})
test_that("gipslda data.frame interface works", {
fit_df <- gipslda(x = iris[, 1:4], grouping = Y)
expect_s3_class(fit_df, "gipslda")
})
test_that("gipslda handles custom arguments", {
# Verify no error on custom args
fit_opts <- gipslda(X, Y, MAP = FALSE, weighted_avg = TRUE)
expect_s3_class(fit_opts, "gipslda")
})
# ==============================================================================
# 2. Testing the 'print' method
# ==============================================================================
test_that("print.gipslda works", {
fit_formula <- gipslda(Species ~ ., data = iris)
# expect_output checks if printing produces any text to console
# You can also add a regexp argument to check for specific words
expect_output(print(fit_formula))
})
# ==============================================================================
# 3. Testing the 'predict' method
# ==============================================================================
test_that("predict.gipslda works correctly", {
# Setup
fit_formula <- gipslda(Species ~ ., data = iris)
# Action: Basic prediction
pred <- predict(fit_formula, newdata = iris)
expect_type(pred, "list")
# Check components
expect_equal(names(pred), c("class", "posterior", "x"))
# Check dimensions
expect_length(pred$class, nrow(iris))
expect_equal(nrow(pred$posterior), nrow(iris))
expect_equal(ncol(pred$posterior), 3) # 3 classes
# Check row sums (probabilities sum to 1)
row_sums <- rowSums(pred$posterior)
# expect_equal handles tolerance automatically for doubles
expect_equal(unname(row_sums), rep(1, nrow(iris)),
tolerance = 1e-6,
ignore_attr = TRUE
)
})
test_that("predict.gipslda works on new subset", {
# Setup
fit_formula <- gipslda(Species ~ ., data = iris)
new_data <- iris[1:5, ]
# Action
pred_small <- predict(fit_formula, newdata = new_data)
# Assert
expect_length(pred_small$class, 5)
})
# ==============================================================================
# 4. Input Validation & Error Handling
# ==============================================================================
test_that("gipslda correctly validates bad inputs", {
# Infinite or NA values
X_na <- X
X_na[1, 1] <- NA
expect_error(gipslda(X_na, Y), "infinite, NA or NaN values in 'x'")
# Dimension mismatch
expect_error(gipslda(X[1:10, ], Y), "nrow\\(x\\) and length\\(grouping\\) are different")
# 'x' is not a matrix
expect_error(gipslda.default(1:10, rep(1, 10)), "'x' is not a matrix")
# Invalid priors
expect_error(gipslda(X, Y, prior = c(0.5, 0.5, 0.5)), "invalid 'prior'")
expect_error(gipslda(X, Y, prior = c(1.2, -0.1, -0.1)), "invalid 'prior'")
expect_error(gipslda(X, Y, prior = c(0.5, 0.5)), "'prior' is of incorrect length")
})
test_that("gipslda handles empty groups and constant variables", {
# Empty group warning
Y_empty <- factor(Y, levels = c("setosa", "versicolor", "virginica", "ghost_group"))
expect_warning(gipslda(X, Y_empty), "group ghost_group is empty")
# Constant variable within groups
X_const <- X
X_const[, 1] <- 1
expect_error(gipslda(X_const, Y), "variable .* appears to be constant within groups")
})
test_that("gipslda handles rank deficiency", {
# Case where variables are numerically constant (0 variance)
X_zero <- matrix(0, nrow = 150, ncol = 4)
# Updated regex to handle both singular ("variable ... appears")
# and plural ("variables ... appear") error messages.
expect_error(gipslda(X_zero, Y), "variables? .* appear(s)? to be constant")
})
# ==============================================================================
# 5. Matrix Interface: Subset & NA Action
# ==============================================================================
test_that("gipslda.matrix handles subset and na.action properly", {
# 1. Test subset
# Selecting 10 from each species.
subset_idx <- c(1:10, 51:60, 101:110)
fit_sub <- gipslda(X, Y, subset = subset_idx)
expect_equal(fit_sub$N, 30)
# 2. Test na.action
X_dirty <- X
X_dirty[1, 1] <- NA
# Workaround for missing row.names in source code
safe_na_omit <- function(obj) {
attr(obj, "row.names") <- seq_along(obj$g)
stats::na.omit(obj)
}
fit_na <- gipslda(X_dirty, Y, na.action = safe_na_omit)
expect_equal(fit_na$N, 149)
})
# ==============================================================================
# 6. Optimizer Selection & Special Arguments
# ==============================================================================
test_that("optimizer logic and special args work", {
# Default behavior (BF for p < 10)
fit_def <- gipslda(X, Y, optimizer = NULL)
expect_s3_class(fit_def, "gipslda")
# Warning when max_iter is missing for MH
expect_warning(
gipslda(X, Y, optimizer = "MH"),
"MH optimizer set but 'max_iter' argument is unspecified"
)
# Weighted average path (weighted_avg = TRUE)
# This triggers the "if (weighted_avg)" block in gipslda.default
fit_weighted <- gipslda(X, Y, weighted_avg = TRUE)
expect_s3_class(fit_weighted, "gipslda")
})
# ==============================================================================
# 7. Prediction Methods & Edge Cases
# ==============================================================================
test_that("predict supports different methods", {
fit <- gipslda(X, Y)
# Plug-in method (default check done in standard test, here specific)
pred_plug <- predict(fit, newdata = X, method = "plug-in")
expect_equal(nrow(pred_plug$posterior), 150)
# Debiased method
pred_deb <- predict(fit, newdata = X, method = "debiased")
expect_equal(nrow(pred_deb$posterior), 150)
# Predictive method (Bayesian) - covers the 'else' block in predict logic
pred_pred <- predict(fit, newdata = X, method = "predictive")
expect_equal(nrow(pred_pred$posterior), 150)
expect_false(any(is.na(pred_pred$posterior)))
})
test_that("predict catches invalid arguments", {
fit <- gipslda(X, Y)
# Dimension mismatch in newdata
expect_error(predict(fit, newdata = X[, 1:2]), "wrong number of variables")
# Invalid prior length
expect_error(
predict(fit, newdata = X, prior = c(0.5, 0.5)),
"'prior' is of incorrect length"
)
# Variable name mismatch warning
X_bad <- X
colnames(X_bad) <- c("A", "B", "C", "D")
expect_warning(
predict(fit, newdata = X_bad),
"variable names in 'newdata' do not match"
)
})
test_that("predict reconstructs data when newdata is missing (Subset logic)", {
subset_idx <- c(1:10, 51:60, 101:110)
fit_sub <- gipslda(X, Y, subset = subset_idx)
# Call predict without newdata -> triggers reconstruction
pred <- predict(fit_sub)
expect_equal(nrow(pred$posterior), 30)
expect_length(pred$class, 30)
})
# ==============================================================================
# 8. Plotting & Auxiliary Methods (Smoke Tests)
# ==============================================================================
test_that("coef.gipslda returns scaling matrix", {
fit <- gipslda(X, Y)
expect_equal(coef(fit), fit$scaling)
})
test_that("plot.gipslda runs without error", {
# The plot method uses MASS::eqscplot. We must ensure MASS is available.
skip_if_not_installed("MASS")
# We attach MASS just for this test so the function eqscplot is found
library(MASS)
fit <- gipslda(X, Y)
# Use temp file to avoid opening graphics window
pdf(NULL)
on.exit(dev.off())
# Standard plot
expect_error(plot(fit), NA)
# Plot with abbreviation
expect_error(plot(fit, abbrev = TRUE), NA)
# Plot with subset
fit_sub <- gipslda(X, Y, subset = c(1:10, 51:60, 101:110))
expect_error(plot(fit_sub), NA)
})
test_that("pairs.gipslda runs without error", {
fit <- gipslda(X, Y)
pdf(NULL)
on.exit(dev.off())
# Standard pairs
expect_error(pairs(fit), NA)
# Trellis type (requires lattice)
if (requireNamespace("lattice", quietly = TRUE)) {
expect_error(pairs(fit, type = "trellis"), NA)
}
})
test_that("model.frame.gipslda works", {
fit <- gipslda(Species ~ ., data = iris)
mf <- model.frame(fit)
expect_s3_class(mf, "data.frame")
expect_equal(nrow(mf), 150)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.