View source: R/gjamHfunctions.R
gjamSensitivity | R Documentation |
Evaluates sensitivity coefficients for full response matrix or subsets of it.
Uses output from gjam
. Returns a matrix
of samples by predictors.
gjamSensitivity(output, group = NULL, nsim = 100, PERSPECIES = TRUE)
output |
object fitted with |
group |
|
nsim |
number of samples from posterior distribution. |
PERSPECIES |
divide variance by number of species in the group |
Sensitivity to predictors of entire reponse matrix or a subset of it, identified by the character string group
. The equations for sensitivity are given here:
browseVignettes('gjam')
Returns a nsim
by predictor matrix of sensitivities to predictor variables, evaluated by draws from the posterior. Because sensitivities may be compared across groups represented by different numbers of species, PERSPECIES = TRUE
returns sensitivity on a per-species basis.
James S Clark, jimclark@duke.edu
Clark, J.S., D. Nemergut, B. Seyednasrollah, P. Turner, and S. Zhang. 2017. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs, 87, 34-56.
gjamSimData
simulates data
A more detailed vignette is can be obtained with:
browseVignettes('gjam')
website 'http://sites.nicholas.duke.edu/clarklab/code/'.
## Not run: ## combinations of scales types <- c('DA','DA','OC','OC','OC','OC','CC','CC','CC','CC','CC','CA','CA','PA','PA') f <- gjamSimData(S = length(types), typeNames = types) ml <- list(ng = 50, burnin = 5, typeNames = f$typeNames) out <- gjam(f$formula, f$xdata, f$ydata, modelList = ml) ynames <- colnames(f$y) group <- ynames[types == 'OC'] full <- gjamSensitivity(out) cc <- gjamSensitivity(out, group) nt <- ncol(full) ylim <- range(rbind(full, cc)) boxplot( full, boxwex = 0.25, at = 1:nt - .21, col='blue', log='y', ylim = ylim, xaxt = 'n', xlab = 'Predictors', ylab='Sensitivity') boxplot( cc, boxwex = 0.25, at = 1:nt + .2, col='forestgreen', add=T, xaxt = 'n') axis(1,at=1:nt,labels=colnames(full)) legend('bottomleft',c('full response','CC data'), text.col=c('blue','forestgreen')) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.