gkmsvm_delta: Calculating deltaSVM scores

View source: R/gkmsvm_delta.R

gkmsvm_deltaR Documentation

Calculating deltaSVM scores

Description

Given support vectors SVs and corresponding coefficients alphas and a pair of file test sequence files (one for reference allele, and one for alternate allele), calculates the deltaSVM scores for the sequences.

Usage

gkmsvm_delta(seqfile_allele1, seqfile_allele2, svmfnprfx, outfile, L = 10, 
K = 6, maxnmm = 3, maxseqlen = 10000, maxnumseq = 1e+06, useTgkm = 1, alg = 2, 
addRC = TRUE, usePseudocnt = FALSE, batchSize = 1e+05, wildcardLambda = 1, 
wildcardMismatchM = 2, alphabetFN = "NULL", svseqfile = NA,alphafile = NA, 
outfile_allele1 = NA, outfile_allele2 = NA)

Arguments

seqfile_allele1

fasta file containing the test sequences (reference allele)

seqfile_allele2

fasta file containing the test sequences (alternate allele). The sequences in this file should be in the exact same order as in seqfile_allele1.

svmfnprfx

SVM model file name prefix

outfile

output file name

L

word length, default=10

K

number of informative columns, default=6

maxnmm

maximum number of mismatches to consider, default=3

maxseqlen

maximum sequence length in the sequence files, default=10000

maxnumseq

maximum number of sequences in the sequence files, default=1000000

useTgkm

filter type: 0(use full filter), 1(use truncated filter: this gaurantees non-negative counts for all L-mers), 2(use h[m], gkm count vector), 3(wildcard), 4(mismatch), default=1

alg

algorithm type: 0(auto), 1(XOR Hashtable), 2(tree), default=0

addRC

adds reverse complement sequences, default=TRUE

usePseudocnt

adds a constant to count estimates, default=FALSE

batchSize

number of sequences to compute scores for in batch, default=100000

wildcardLambda

lambda for wildcard kernel, defaul=0.9

wildcardMismatchM

max mismatch for Mismatch kernel or wildcard kernel, default=2

alphabetFN

alphabets file name, if not specified, it is assumed the inputs are DNA sequences

svseqfile

SVM support vectors sequence file name (not needed if svmfnprfx is provided)

alphafile

SVM support vectors weights file name (not needed if svmfnprfx is provided)

outfile_allele1

output filename for gkmSVM scores for the reference sequences (optional)

outfile_allele2

output filename for gkmSVM scores for the alternate sequences (optional)

Details

predicting the effect of variants using gkmSVM model: gkmsvm_delta can be used to predict the effect of sequence variants. The sequences corresponding to reference allele and alternate alleles are given in two separate files. gkmSVM is used to score each set of sequences, and the difference in the gkmSVM score for the reference and alternate allele is reported. Note that the same set of parameters (L, K, maxnmm) used in the gkmsvm_kernel should be specified for optimal scoring.

gkmsvm_kernel(seqfile_allele1, seqfile_allele2, svmfnprfx, outfn); #scores test sequences

Value

deltaSVM scores

Author(s)

Mahmoud Ghandi

References

Ghandi M, Mohammad-Noori M, Ghareghani N, Lee D, Garraway LA, and Beer MA. gkmSVM: an R package for gapped-kmer SVM, Bioinformatics 2016.

Ghandi M, Lee D, Mohammad-Noori M, Beer MA. 2014. Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features. PLoS Comput Biol 10: e1003711.

Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, and Beer MA. A method to predict the impact of regulatory variants from DNA sequence. Nature Genetics 2015.

Examples


  #Input file names:  
  posfn= 'test_positives.fa'   #positive set (FASTA format)
  negfn= 'test_negatives.fa'   #negative set (FASTA format)
  testfn_ref= 'test_testsetRef.fa'    #test set (reference allele) (FASTA format)
  testfn_alt= 'test_testsetAlt.fa'    #test set (alternate allele) (FASTA format)
  
  #Output file names:  
  kernelfn= 'test_kernel.txt' #kernel matrix
  svmfnprfx= 'test_svmtrain'  #SVM files 
  outfn =   'output.txt'      #output delta svm scores for sequences in the test set       

#  gkmsvm_kernel(posfn, negfn, kernelfn);                #computes kernel 
#  gkmsvm_train(kernelfn,posfn, negfn, svmfnprfx);       #trains SVM
#  gkmsvm_delta(testfn_ref,testfn_alt, svmfnprfx, outfn);            #scores test sequences 


gkmSVM documentation built on Aug. 21, 2023, 1:06 a.m.