gkmsvm_trainCV | R Documentation |
Using the kernel matrix created by 'gkmsvm_kernel', this function trains the SVM classifier. It uses repeated CV to find optimum SVM parameter C. Also generates ROC and PRC curves.
gkmsvm_trainCV(kernelfn, posfn, negfn, svmfnprfx=NA,
nCV=5, nrepeat=1, cv=NA, Type="C-svc", C=1, shrinking=FALSE,
showPlots=TRUE, outputPDFfn=NA, outputCVpredfn=NA, outputROCfn=NA, ...)
kernelfn |
kernel matrix file name |
posfn |
positive sequences file name |
negfn |
negative sequences file name |
svmfnprfx |
(optional) output SVM model file name prefix |
nCV |
(optional) number of CV folds |
nrepeat |
(optional) number of repeated CVs |
cv |
(optional) CV group label. An array of length (npos+nneg), containing CV group number (between 1 an nCV) for each sequence |
Type |
(optional) SVM type (default='C-svc'), see 'kernlab' documentation for more details. |
C |
(optional)a vector of all values of C (SVM parameter) to be tested. (default=1), see 'kernlab' documentation for more details. |
shrinking |
optional: shrinking parameter for kernlab (default=FALSE), see 'kernlab' documentation for more details. |
showPlots |
generate plots (default==TRUE) |
outputPDFfn |
filename for output PDF, default=NA (no PDF output) |
outputCVpredfn |
filename for output cvpred (predicted CV values), default=NA (no output) |
outputROCfn |
filename for output auROC (Area Under an ROC Curve) and auPRC (Area Under the Precision Recall Curve) values, default=NA (no output) |
... |
optional: additional SVM parameters, see 'kernlab' documentation for more details. |
Trains SVM classifier and generates two files: [svmfnprfx]_svalpha.out for SVM alphas and the other for the corresponding SV sequences ([svmfnprfx]_svseq.fa)
Mahmoud Ghandi
#Input file names:
posfn= 'test_positives.fa' #positive set (FASTA format)
negfn= 'test_negatives.fa' #negative set (FASTA format)
testfn= 'test_testset.fa' #test set (FASTA format)
#Output file names:
kernelfn= 'test_kernel.txt' #kernel matrix
svmfnprfx= 'test_svmtrain' #SVM files
outfn = 'output.txt' #output scores for sequences in the test set
# gkmsvm_kernel(posfn, negfn, kernelfn); #computes kernel
# cvres = gkmsvm_trainCV(kernelfn,posfn, negfn, svmfnprfx,
# outputPDFfn='ROC.pdf', outputCVpredfn='cvpred.out');
# #trains SVM, plots ROC and PRC curves, and outputs model predictions.
# gkmsvm_classify(testfn, svmfnprfx, outfn); #scores test sequences
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.