maPlot | R Documentation |
MA plots
maPlot( object, x1var, x2var, x1Values = NULL, x2Values = NULL, pCutoff = 0.01, plotCutoff = 1, zeroCountCutoff = 50, colours = c("grey", "midnightblue", "mediumvioletred", "goldenrod"), labels = c(), fontSize = 12, labelFontSize = 4, useAdjusted = FALSE, graphics = "ggplot", verbose = FALSE )
object |
A glmmSeq object created by
|
x1var |
The name of the first (inner) x parameter |
x2var |
The name of the second (outer) x parameter |
x1Values |
Timepoints or categories in |
x2Values |
Categories in |
pCutoff |
The significance cut-off for colour-coding (default=0.01) |
plotCutoff |
Which probes to include by significance cut-off (default=1 for all markers) |
zeroCountCutoff |
Which probes to include by minimum counts cut-off (default=50) |
colours |
Vector of colours to use for significance groups |
labels |
Row names or indices to label on plot |
fontSize |
Font size |
labelFontSize |
Font size for labels |
useAdjusted |
whether to use adjusted p-values
(must have q-values in |
graphics |
Either "ggplot" or "plotly" |
verbose |
Whether to print statistics |
List of three plots. One plot for each x2Value
and one combined
figure
data(PEAC_minimal_load) disp <- apply(tpm, 1, function(x){ (var(x, na.rm=TRUE)-mean(x, na.rm=TRUE))/(mean(x, na.rm=TRUE)**2) }) resultTable <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID), countdata = tpm[1:5, ], metadata = metadata, dispersion = disp) plots <- maPlot(resultTable, x1var='Timepoint', x2var='EULAR_6m', x2Values=c('Good', 'Non-response'), graphics="plotly") plots$combined
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.