Nothing
############################################################################################################
#' Get predicteds or coefficients using a glmnetr output object
#'
#' @description
#' Give predicteds based upon a glmnetr() output object. Because the glmnetr() function
#' has no cross validation information, lambda and gamma must be specified. To choose
#' lambda and gamma based upon cross validation one may use the cv.glmnetr() or nested.glmnetr()
#' and the corresponding predict() functions.
#'
#' @param object A glmnetr output object
#' @param xs_new A desing matrix for predictions
#' @param lam The value for lambda for determining the lasso fit. Required.
#' @param gam The value for gamma for determining the lasso fit. Required.
#' @param ... Additional arguments passed to the predict function.
#'
#' @return Coefficients or predictions using a glmnetr output object. When
#' outputting coefficients (beta), creates a list with the first element, beta_,
#' including 0 and non-0 terms and the second element, beta, including only
#' non 0 terms.
#'
#' @seealso
#' \code{\link{nested.glmnetr}}
#'
#' @noRd
#'
predict.glmnetr_0_5_5 = function( object, xs_new=NULL, lam=NULL, gam=NULL, ...) {
if (is.null(gam)) {gam=1}
if (inherits(lam,"numeric") & inherits(gam,"numeric")) {
if (gam < 0) { gam = 0
} else if (gam > 1) { gam = 1 }
lambda_index = sum(object$lambda>=lam)
lambda_index = min(lambda_index, dim(object$betag0)[2])
betag0 = object$betag0[,lambda_index]
betag1 = object$betag1[,lambda_index]
beta_ = (1-gam) * betag0 + gam * betag1
beta_
if (!is.null(xs_new)) {
score_new = xs_new %*% beta_
outputobject = score_new
} else {
beta = beta_[(beta_!=0)]
outputobject=list(beta_=beta_, beta=beta)
}
return( outputobject )
} else { print( " Check specification of lamb(da) and gam(ma) ")}
}
###############################################################################################################
###############################################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.