# charStable: The characteristic function of a stable distribution In gmm: Generalized Method of Moments and Generalized Empirical Likelihood

## Description

It computes the theoretical characteristic function of a stable distribution for two different parametrizations. It is used in the vignette to illustrate the estimation of the parameters using GMM.

## Usage

 1 charStable(theta, tau, pm = 0) 

## Arguments

 theta Vector of parameters of the stable distribution. See details. tau A vector of numbers at which the function is evaluated. pm The type of parametization. It takes the values 0 or 1.

## Details

The function returns the vector Ψ(θ,τ,pm) defined as E(e^{ixτ}, where τ is a vector of real numbers, i is the imaginary number, x is a stable random variable with parameters θ = (α,β,γ,δ) and pm is the type of parametrization. The vector of parameters are the characteristic exponent, the skewness, the scale and the location parameters, respectively. The restrictions on the parameters are: α \in (0,2], β\in [-1,1] and γ>0. For mode details see Nolan(2009).

## Value

It returns a vector of complex numbers with the dimension equals to length(tau).

## References

Nolan J. P. (2009), Stable Disttributions. Math/Stat Department, American University. URL http://academic2.american.edu/~jpnolan/stable/stable.html.

## Examples

 1 2 3 4 5 6 # GMM is like GLS for linear models without endogeneity problems pm <- 0 theta <- c(1.5,.5,1,0) tau <- seq(-3, 3, length.out = 20) char_fct <- charStable(theta, tau, pm) 

gmm documentation built on June 20, 2017, 9:12 a.m.