vcov | R Documentation |
It extracts the matrix of variances and covariances from gmm
or gel
objects.
## S3 method for class 'gmm'
vcov(object, ...)
## S3 method for class 'gel'
vcov(object, lambda = FALSE, ...)
## S3 method for class 'tsls'
vcov(object, type=c("Classical","HC0","HC1","HAC"),
hacProp = list(), ...)
## S3 method for class 'ategel'
vcov(object, lambda = FALSE, robToMiss = TRUE, ...)
object |
An object of class |
lambda |
If set to TRUE, the covariance matrix of the Lagrange multipliers is produced. |
type |
Type of covariance matrix for the meat |
hacProp |
A list of arguments to pass to |
robToMiss |
If |
... |
Other arguments when |
For tsls(), if vcov is set to a different value thand "Classical", a sandwich covariance matrix is computed.
A matrix of variances and covariances
# GMM #
n = 500
phi<-c(.2,.7)
thet <- 0
sd <- .2
x <- matrix(arima.sim(n = n,list(order = c(2,0,1), ar = phi, ma = thet, sd = sd)), ncol = 1)
y <- x[7:n]
ym1 <- x[6:(n-1)]
ym2 <- x[5:(n-2)]
H <- cbind(x[4:(n-3)], x[3:(n-4)], x[2:(n-5)], x[1:(n-6)])
g <- y ~ ym1 + ym2
x <- H
res <- gmm(g, x)
vcov(res)
## GEL ##
t0 <- c(0,.5,.5)
res <- gel(g, x, t0)
vcov(res)
vcov(res, lambda = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.