binomQ | R Documentation |
Compute exact binomial probabilities using (big integer and) big rational arithmetic.
dbinomQ(x, size, prob, log = FALSE)
x , size |
integer or big integer ( |
prob |
the probability; should be big rational
( |
log |
logical; must be |
a big rational ("bigq"
) of the length
of
(recycled) x+size+prob
.
Martin Maechler
chooseZ
; R's (stats package) dbinom()
.
dbinomQ(0:8,8, as.bigq(1,2))
## 1/256 1/32 7/64 7/32 35/128 7/32 7/64 1/32 1/256
ph16. <- dbinomQ(0:16, size=16, prob = 1/2) # innocous warning
ph16 <- dbinomQ(0:16, size=16, prob = as.bigq(1,2))
ph16.75 <- dbinomQ(0:16, size=16, prob = as.bigq(3,4))
ph8.75 <- dbinomQ(0:8, 8, as.bigq(3,4))
stopifnot(exprs = {
dbinomQ(0:8,8, as.bigq(1,2)) * 2^8 == choose(8, 0:8)
identical(ph8.75, chooseZ(8,0:8) * 3^(0:8) / 4^8)
all.equal(ph8.75, choose (8,0:8) * 3^(0:8) / 4^8, tol=1e-15) # see exactly equal
identical(ph16, ph16.)
identical(ph16,
dbinomQ(0:16, size=16, prob = as.bigz(1)/2))
all.equal(dbinom(0:16, 16, prob=1/2), asNumeric(ph16), tol=1e-15)
all.equal(dbinom(0:16, 16, prob=3/4), asNumeric(ph16.75), tol=1e-15)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.