| matrix | R Documentation |
Overload of “all” standard tools useful for matrix manipulation adapted to large numbers.
## S3 method for class 'bigz'
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL, mod = NA,...)
is.matrixZQ(x)
## S3 method for class 'bigz'
x %*% y
## S3 method for class 'bigq'
x %*% y
## S3 method for class 'bigq'
crossprod(x, y=NULL,...)
## S3 method for class 'bigz'
tcrossprod(x, y=NULL,...)
## S3 method for class 'bigz'
cbind(..., deparse.level=1)
## S3 method for class 'bigq'
rbind(..., deparse.level=1)
## ..... etc
data |
an optional data vector |
nrow |
the desired number of rows |
ncol |
the desired number of columns |
byrow |
logical. If |
dimnames |
not implemented for |
mod |
optional modulus (when |
x, y |
numeric, |
..., deparse.level |
arguments from the generic; not made use of, i.e., disregarded here. |
The extract function ("[") is the same use for vector or
matrix. Hence, x[i] returns the same values as x[i,].
This is not considered a feature and may be changed in the future
(with warnings).
All matrix multiplications should work as with numeric matrices.
Special features concerning the "bigz" class: the
modulus can be
Just play with large numbers
Example:
matrix.bigz(1:6,nrow=2,ncol=3,mod=7)
This means you work
in Z/nZ, for the whole matrix. It is the only case
where the %*% and solve functions will work
in Z/nZ.
Example:
matrix.bigz(1:6,nrow=2,ncol=3,mod=1:5). Then, the modulus
is repeated to the end of data. This can be used to define a
matrix with a different modulus at each row.
Modulus is defined for each cell
matrix(): A matrix of class "bigz" or "bigq".
is.matrixZQ(): TRUE or FALSE.
dim(), ncol(), etc: integer or NULL, as for
simple matrices.
cbind(x,y,...) and rbind(x,y,...) now (2024-01, since
gmp version 0.9-5), do drop deparse.level=. instead of
wrongly creating an extra column or row and the "bigz"
method takes all arguments into account and calls the "bigq"
method in case of arguments inheriting from "bigq".
Antoine Lucas and Martin Maechler
Solving a linear system: solve.bigz.
matrix
V <- as.bigz(v <- 3:7)
crossprod(V)# scalar product
(C <- t(V))
stopifnot(dim(C) == dim(t(v)), C == v,
dim(t(C)) == c(length(v), 1),
crossprod(V) == sum(V * V),
tcrossprod(V) == outer(v,v),
identical(C, t(t(C))),
is.matrixZQ(C), !is.matrixZQ(V), !is.matrixZQ(5)
)
## a matrix
x <- diag(1:4)
## invert this matrix
(xI <- solve(x))
## matrix in Z/7Z
y <- as.bigz(x,7)
## invert this matrix (result is *different* from solve(x)):
(yI <- solve(y))
stopifnot(yI %*% y == diag(4),
y %*% yI == diag(4))
## matrix in Q
z <- as.bigq(x)
## invert this matrix (result is the same as solve(x))
(zI <- solve(z))
stopifnot(abs(zI - xI) <= 1e-13,
z %*% zI == diag(4),
identical(crossprod(zI), zI %*% t(zI))
)
A <- matrix(2^as.bigz(1:12), 3,4)
for(a in list(A, as.bigq(A, 16), factorialZ(20), as.bigq(2:9, 3:4))) {
a.a <- crossprod(a)
aa. <- tcrossprod(a)
stopifnot(identical(a.a, crossprod(a,a)),
identical(a.a, t(a) %*% a)
,
identical(aa., tcrossprod(a,a)),
identical(aa., a %*% t(a))
)
}# {for}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.