R/matrixz.R

Defines functions apply.bigz apply.default apply rbind.bigz cbind.bigz .ncolZQ .nrowZQ .dimsetZQ .dimZQ is.matrixZQ t.bigz as.vector.bigz as.matrix.bigz matrix.bigz matrix.default matrix

Documented in apply apply.bigz apply.default as.matrix.bigz as.vector.bigz cbind.bigz is.matrixZQ matrix matrix.bigz matrix.default rbind.bigz t.bigz

matrix <- function(data=NA, nrow=1, ncol=1, byrow=FALSE, ...)
  UseMethod("matrix")

matrix.default <- function(...) base::matrix(...)
##
## looks "better", but results wrongly, e.g. matrix(1:6, 3) :
## matrix.default <- function(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
##                            dimnames = NULL, ...)
##     ## here, rightly, any "..." will give an error from base::matrix
##     base::matrix(data, nrow=nrow, ncol=ncol, byrow=byrow,
##                  dimnames=dimnames, ...)

matrix.bigz <- function(data=NA, nrow=1, ncol=1, byrow=FALSE, dimnames=NULL,
                        mod=NA, ...)
  {
    if(!is.null(dimnames))
        warning("'dimnames' are not implemented for this class")
    .Call(as_matrixz, data,
          as.integer(nrow), as.integer(ncol), as.integer(byrow),
          mod)
  }


as.matrix.bigz <- function(x, ...)
{
    if(is.matrix(x) || is.data.frame(x) || length(dim(x)) == 2L) {
	d <- dim(x)
	n <- d[1L]
	p <- d[2L]
    } else {
        n <- length(x)
        p <- 1L
    }
    matrix.bigz(x, nrow=n, ncol=p)
}

as.vector.bigz <- function(x, mode="any") {
    if(mode == "list") {
	## "easy"; TODO: gmpToListZ()  withOUT matrix
	.Call(gmpMatToListZ, matrix.bigz(x, nrow=length(x), ncol=1L), 1L)
    } else if (mode == "any") {
	attr(x,"nrow") <- NULL
	x
    } else as.vector(as.double(x), mode=mode)
}

t.bigz <- function(x) .Call(bigint_transposeR, x)


##aperm.bigz <- function(a,perm, resize= TRUE)
##  {
##    dims <- dim(a)
##    if (missing(perm))
##      perm <- c(1,2)
##    if(perm[1] > perm[2])
##      ans = .Call("bigint_transposeR",
##        a,
##       PACKAGE="gmp")
##   else
##     ans = a
##    if(!resize)
##      dim(ans) <- dims
##    ans
##}

## MM: the  attr(*, "nrow")  implementation is hack -- not allowing >= 3d arrays
## --==> advertize  .dimZQ(), .nrowZQ(), etc  instead of the "nrow" attr

##' Is 'x' a "bigz" or "bigq" matrix
##' @return \code{ !is.null(attr(x,"nrow")) } but faster
is.matrixZQ <- function(x) .Call(is_matrix_zq, x)

## NB  '%/%' in .dimZQ() and .ncolZQ()  to "remain" 'integer'

.dimZQ <- function(x) {# return NULL for non-array {as standard R}
    if(is.null(n <- attr(x,"nrow"))) n else c(n, if(n) length(x) %/% n else 0L)
}

.dimsetZQ <- function(x,value)
{
  attr(x,"nrow") <-
    if(is.null(value)) { ## dim(m) <- NULL as in standard R:
      NULL
    } else {
      stopifnot(value == (v <- as.integer(value)), v >= 0, prod(v) == length(x))
      v[1L]
    }
  x
}
.nrowZQ <- function(x) attr(x,"nrow")
.ncolZQ <- function(x) if(is.null(n <- attr(x,"nrow"))) n else if(n) length(x) %/% n else 0L

dim.bigz <- .dimZQ
dim.bigq <- .dimZQ
`dim<-.bigz` <- .dimsetZQ
`dim<-.bigq` <- .dimsetZQ

## not usable as S3, as long as  ncol(), nrow() are not S3 generic
## FIXME? remove these ... ncol() / nrow() go via dim() anyway!
nrow.bigz <- .nrowZQ
nrow.bigq <- .nrowZQ
ncol.bigz <- .ncolZQ
ncol.bigq <- .ncolZQ


cbind.bigz <- function(..., deparse.level = 1)
{
    argL <- list(...)
    if(any(vapply(argL, inherits, NA, what="bigq")))
        .Call(bigrational_cbind, argL)
    else
        .Call(biginteger_cbind, argL)
}

rbind.bigz <- function(..., deparse.level = 1)
{
    argL <- list(...)
    if(any(vapply(argL, inherits, NA, what="bigq")))
        .Call(bigrational_rbind, argL)
    else
        .Call(biginteger_rbind, argL)
}


apply <- function(X, MARGIN, FUN, ...)
    UseMethod("apply")
apply.default <- function(X, MARGIN, FUN, ...)
    base::apply(X, MARGIN, FUN, ...)

apply.bigz <- function(X, MARGIN, FUN, ...)
{
  ## change matrix to a list:
  X <- .Call(gmpMatToListZ, X, as.integer(MARGIN))
  ## then use std lapply() and convert back to vector:
  .Call(biginteger_c, lapply(X, FUN, ...))
}

Try the gmp package in your browser

Any scripts or data that you put into this service are public.

gmp documentation built on Sept. 11, 2024, 7:37 p.m.