plot.cond.b.joint | R Documentation |
joint
model.Plot posterior distribution of the random effects for a joint
model.
## S3 method for class 'cond.b.joint'
plot(
x,
id = NULL,
show.cov = TRUE,
nrow = NULL,
ncol = NULL,
title = NULL,
...
)
x |
object of class |
id |
integer, if specified this shows the plots the posterior density for the chosen
id (as they appeared in original |
show.cov |
logical, should the 'true' (normal) density be overlaid on these plots? If
|
nrow |
integer specifying the number of rows to use in paneled plot. |
ncol |
integer specifying the number of columns to use in paneled plot. Note that
both |
title |
optional character string to specify the title. This is placed at the top middle of the graphics device. |
... |
Additional arguments, these are passed to the plotting of the individual densities. |
# Bivariate Gaussian
dat <- simData(n = 100)$data
long.formulas <- list(Y.1 ~ time + cont + bin + (1 + time|id),
Y.2 ~ time + cont + bin + (1 + time|id))
surv.formula <- Surv(survtime, status) ~ bin
fit <- joint(long.formulas, surv.formula, dat, list("gaussian","gaussian"))
cond.b <- cond.ranefs(fit, burnin = 500L, N = 4500L)
# Posterior for entire sample with dummy title
plot(cond.b, title = "Example title")
# Posterior for a randomly selected id
dummy.id <- sample(1:100, 1)
# Should show good agreement between true posterior and approximate normal.
plot(cond.b, id = dummy.id, title = paste0("id: ", dummy.id))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.