Nothing
#' Genetic dominance effects
#'
#' @description
#' This function estimates the dominance effect of a genetic variant on a quantitatvie trait
#' Nothing fancy here. We apply a simple linear regression model to estimate dominance effects.
#' We include a linear term, coded as 0,1 and 2 for non-carriers, heterozygotes and homozygous carriers of the effect allele.
#' We also include a dominance term, coded as 1 for homozygous carriers and 0 for others.
#' Effect size and significance is based on the dominance term.
#'
#' @param qt A numeric vector
#' @param g A vector with (possibly imputed) genotype values. All entries should be larger than 0 and smaller than 2.
#' @param round_imputed A boolian variable determining whether imputed genotype values should be rounded to the nearest integer in the analysis
#' @param covariates A dataframe containing any covariates that should be used; one column per covariate.
#'
#' @returns
#' A list with the dominanc effect and corresponding standard error, t statistic and p-value
#' @examples
#' g_vec <- rbinom(100000, 2, 0.3)
#' qt_vec <- rnorm(100000) + 0.2 * g_vec^2
#' res <- dominance.calc(qt_vec, g_vec)
#' @export
dominance.calc <- function(qt, g, round_imputed = FALSE, covariates = as.data.frame(matrix(0, nrow = 0, ncol = 0))){
g_rounded <- round(g)
if(round_imputed == TRUE){
g <- round(g)
}
if(length(unique(as.factor(g_rounded))) < 3) {
warning("Dominance effect undefined. There are no subjects of one or more genotype group.")
delta <- NA
se <- NA
t <- NA
p <- NA
}else {
g2 <- as.numeric(g_rounded == 2)
#We define a dataframe containing all variables that should be considered
Dom_data <- as.data.frame(cbind(qt, g2))
Dom_data <- cbind(Dom_data, g)
if(nrow(covariates) > 0) {
Dom_data <- cbind(Dom_data, covariates)
}
#We use linear regression to estimate the dominance effect
l_delta <- stats::lm(qt ~ ., data = Dom_data)
param <- "g2"
if(param %in% rownames(stats::coef(summary(l_delta)))){
delta <- summary(l_delta)$coeff[param, 1]
se <- summary(l_delta)$coeff[param, 2]
t <- summary(l_delta)$coeff[param, 3]
p <- summary(l_delta)$coeff[param, 4]
}else{
warning("Singular model matrix")
delta <- NA
se <- NA
t <- NA
p <- NA
}
}
return(list(dominance_effect = delta, standard_error = se, t = t, pval = p))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.