knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
This article will show users how to register data using some specified shift and stretch parameters. This demo will use one of the genes from the sample data provided by the package.
greatR
provides an example of data frame containing two different species A. thaliana and B. rapa with two and three different replicates, respectively. This data frame can be read as follows:
# Load the package library(greatR) library(data.table)
# Load a data frame from the sample data b_rapa_data <- system.file("extdata/brapa_arabidopsis_data.csv", package = "greatR") |> data.table::fread()
The illustrative table below shows the major differences between runing register()
with and without optimisation.
knitr::include_graphics("figures/registration_params_table.png")
Here, we will only use a single gene with gene_id = "BRAA03G023790.3C"
from the sample data, but this feature can also be used when registering multiple genes.
gene_BRAA03G023790.3C_data <- b_rapa_data[gene_id == "BRAA03G023790.3C"]
Before registering, we can use the helper function get_approximate_stretch()
to approximate the stretch factor between our sample datasets.
get_approximate_stretch( gene_BRAA03G023790.3C_data, reference = "Ro18", query = "Col0" )
We can now use the estimated stretch calculated above in the registration process below. Users need to set use_optimisation = FALSE
to disable the automated optimisation process.
registration_results <- register( gene_BRAA03G023790.3C_data, reference = "Ro18", query = "Col0", scaling_method = "z-score", stretches = 2.25, shifts = -4.36, use_optimisation = FALSE ) #> ── Validating input data ─────────────────────────────────────────────────────── #> ℹ Will process 1 gene. #> ℹ Using estimated standard deviation, as no `exp_sd` was provided. #> ℹ Using `scaling_method` = "z-score". #> #> ── Starting manual registration ──────────────────────────────────────────────── #> ℹ Using `overlapping_percent` = 50% as a registration criterion. #> ✔ Applying registration for genes (1/1) [38ms]
To check whether the gene is registered or not, we can get the summary results by accessing the model_comparison
table from the registration result.
registration_results$model_comparison |> knitr::kable()
As we can see, using the given stretch and shift parameter above, the B. rapa gene BRAA03G023790.3C can be registered.
Users can also specify a list of parameters rather than a single value. Similar to the registration process above, users need to set use_optimisation = FALSE
to disable the automated optimisation process.
registration_results <- register( gene_BRAA03G023790.3C_data, reference = "Ro18", query = "Col0", scaling_method = "z-score", stretches = seq(1, 3, 0.1), shifts = seq(0, 4, 0.1), use_optimisation = FALSE ) #> ── Validating input data ─────────────────────────────────────────────────────── #> ℹ Will process 1 gene. #> ℹ Using estimated standard deviation, as no `exp_sd` was provided. #> ℹ Using `scaling_method` = "z-score". #> #> ── Starting manual registration ──────────────────────────────────────────────── #> ℹ Using `overlapping_percent` = 50% as a registration criterion. #> ✔ Applying registration for genes (1/1) [1.3s]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.