Nothing
# Some code (for printing and plotting) is re-purposed from the R package
# "glmnet" (Hastie et al., 2010) https://cran.r-project.org/package=glmnet
grpnet <-
function(x, ...){
UseMethod("grpnet")
} # end grpnet
print.grpnet <-
function(x, ...){
cat("\nCall: ")
print(x$call)
cat("\n")
df <- data.frame(x$nzgrp,
x$df,
round(100 * x$dev.ratio, 2),
x$lambda)
colnames(df) <- c("nGrp", "Df", "%Dev", "Lambda")
intercept <- ifelse(max(abs(x$a0)) > 0, TRUE, FALSE)
print(df, digits = 6)
cat("\n")
} # end print.grpnet
plot.grpnet <-
function(x, type = c("coef", "imp", "norm", "znorm"),
newx, newdata, intercept = FALSE,
color.by.group = TRUE, col = NULL, ...){
int <- ifelse(x$args$intercept && !intercept, 1, 0)
types <- c("coef", "imp", "norm", "znorm")
type <- pmatch(type[1], types)
if(is.na(type)) stop("Invalid 'type' input")
type <- types[type]
if(color.by.group) {
if(is.null(col)){
col <- 1:x$ngroups
} else {
if(length(col) != x$ngroups) stop("Input 'col' must be of length x$ngroups")
}
} else {
if(is.null(col)) col <- rep("black", x$ngroups)
}
if(type == "imp" && missing(newx) && missing(newdata)){
stop("When type = 'imp', you need to provide either 'newx' or 'newdata'.")
}
res <- predict(x, newx = newx, newdata = newdata, type = type)
if(type == "imp"){
colors <- col
if(x$family$family == "multinomial"){
rnames <- rownames(res[[1]])
cnames <- colnames(res[[1]])
for(k in 1:length(res)){
res[[k]] <- rbind(0, res[[k]])
rownames(res[[k]]) <- c("(Intercept)", rnames)
colnames(res[[k]]) <- cnames
}
index <- (1+int):nrow(res[[1]])
for(j in 1:length(res)){
plot(log(x$lambda), res[[j]][1,], ylim = extendrange(sapply(res, function(x) range(x[index,], na.rm = TRUE))),
xlab = "Log Lambda", ylab = "Importance", t = "n", ...)
legend("top", legend = x$ylev[j], bty = "n", cex = 0.8)
for(k in index) {
lines(log(x$lambda), res[[j]][k,], col = colors[k])
}
}
} else {
rnames <- rownames(res)
cnames <- colnames(res)
res <- rbind(0, res)
rownames(res) <- c("(Intercept)", rnames)
colnames(res) <- cnames
index <- (1+int):nrow(res)
plot(log(x$lambda), res[1,], ylim = extendrange(res[index,]),
xlab = "Log Lambda", ylab = "Importance", t = "n", ...)
for(k in index) {
lines(log(x$lambda), res[k,], col = colors[k])
}
}
} else if(type %in% c("norm", "znorm")){
colors <- col
index <- (1+int):nrow(res)
plot(log(x$lambda), res[1,], ylim = extendrange(res[index,]),
xlab = "Log Lambda", ylab = "L2 Norm", t = "n", ...)
for(k in index) {
lines(log(x$lambda), res[k,], col = colors[k])
}
} else {
colors <- col[as.integer(as.factor(x$group))]
if(x$family$family == "multinomial"){
index <- (1+int):nrow(res[[1]])
for(j in 1:length(res)){
plot(log(x$lambda), res[[j]][1,], ylim = extendrange(sapply(res, function(x) range(x[index,], na.rm = TRUE))),
xlab = "Log Lambda", ylab = "Coefficients", t = "n", ...)
legend("top", legend = x$ylev[j], bty = "n", cex = 0.8)
for(k in index) {
lines(log(x$lambda), res[[j]][k,], col = colors[k])
}
}
} else {
index <- (1+int):nrow(res)
plot(log(x$lambda), res[1,], ylim = extendrange(res[index,]),
xlab = "Log Lambda", ylab = "Coefficients", t = "n", ...)
for(k in index) {
lines(log(x$lambda), res[k,], col = colors[k])
}
}
}
abline(h = 0)
} # end plot.grpnet
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.